VI. Rudiments of Algebraic Geometry. The Number of Points in Varieties over Finite Fields.

General References: Artin (1955), Lang (1958), Shafarevich (1974), Mumford () .
§1. Varieties.

THEOREM lA. Let k be a field. Let X_{1}, \ldots, X_{n} be variables.
(i) In the ring $k\left[X_{1}, X_{2}, \ldots, X_{n}\right]$, every ideal has a finite basis.
(ii) In this ring the ascending chain condition holds,i.e., if $\mathfrak{U}_{1} \subseteq \mathfrak{M}_{2} \subseteq \ldots$ is an ascending sequence of ideals, then for some $\mathrm{m}, \mathfrak{U}_{\mathrm{m}}=\mathfrak{U}_{\mathrm{m}+\mathbf{1}}=\cdots \quad$.
(iii) Every non-empty set of ideals in this ring which is partially ordered by set inclusion, has at least one maximal element.

Statement (i) is the Hilbert Basis Theorem (Hilbert 1888). It is well known that the three conditions (i), (ii), (iii) for a ring R are equivalent. A ring satisfying these conditions is called Noetherian. A proof of this Theorem may be found in books on algebra, e.g. Van der Waerden (1955), Kap. 12 or Zariski-Samuel (1958), Ch. IV, and will not be given here.

If k, K are fields such that $k \subseteq K$, the transcendence degree of K over k , written tr . deg. K / k, is the maximum number of elements in K which are algebraically independent over k.

In what follows, k, \cap will be fields such that $k \subseteq \Omega$, the tr. deg $\Omega / k=\infty$, and Ω is algebraically closed. We call k the ground field, and Ω the universal domain. For example, we may take
$\mathrm{k}=\mathrm{Q}$ (the rationals), $\delta=\boldsymbol{C}$ (the complex numbers). or $k=F_{q}$, the finite field of a q elements, $\Omega=\overline{F_{q}\left(X_{1}, X_{2}, \ldots\right)}$, i.e. the algebraic closure of $F_{q}\left(X_{1}, X_{2}, \ldots\right)$.

Consider Ω^{n}, the space of n-tuples of elements in Ω. Suppose \mathfrak{J} is an ideal in $k\left[x_{1}, \ldots, x_{n}\right]=k[x]$. Let $A(\Im)$ be the set of $\underline{x} \quad=\left(x_{1}, \ldots, x_{n}\right) \in \Omega^{n}$ having $f(\underset{=}{x})=0$ for every $f(\underset{=}{x}) \in \mathcal{J}$. Every set A(9) so obtained is called an algebraic set. More precisely, it is a k-algebraic set. If we have such an ideal \mathcal{G}, then by Theorem 1A, there exists a basis of \mathfrak{J} consisting of a finite number of polynomials, say $f_{1}(\underset{=}{X}), \ldots, f_{m}(\underset{\sim}{X})$. Therefore $A(\mathcal{S})$ can also be characterized as the set of $\underset{=}{x} \in \Omega^{n}$ with $f_{1}(\underset{=}{x})=\ldots=f_{m}(\underset{=}{x})=0$. Note that if $\Im_{1} \subseteq \Im_{2}$, then $A\left(\Im_{1}\right) \supseteq A\left(\Im_{2}\right)$.

Examples: (1) Let $k=Q, \Omega=\mathbb{C}, \mathrm{n}=2$, and \boldsymbol{Y} the ideal generated by $f\left(X_{1}, X_{2}\right)=x_{1}^{2}+x_{2}^{2}-1$. Then $A(\xi)$ is the unit circle.
(2) Again let $k=\mathbb{Q}, \Omega=\mathbf{C}, \mathrm{n}=2$, and take \mathcal{J} to be the ideal generated by $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}$. Then $A(S)$ consists of the two intersecting lines $x_{2}=x_{1}, x_{2}=-x_{1}$.

THEOREM 1B. (i) The empty set ϕ and Ω^{n} are algebraic sets.
(ii) A finite union of algebraic sets is an algebraic set.
(iii) An intersection of an arbitrary number of algebraic sets is an algebraic set.

$$
\text { Proof: (i) If } \mathcal{J}=k\left[x_{1}, \ldots, x_{n}\right] \text {, then } A(\mathcal{S})=\phi . \text { If } \mathcal{J}=(0), \dot{e}
$$ the principal ideal generated by the zero polynomial, then $A(\mathcal{O})=\Omega^{n}$.

(ii) It is sufficient to show that the union of two algebraic sets is again an algebraic set. Suppose A is the algebraic set given by

```
the equations \(f_{1}\left(\underset{=}{(x)}=\ldots=f_{\ell}(\underset{=}{(x)}=0, B\right.\) is the algebraic set given
by the equations \(g_{1}(\underset{=}{=})=\cdots=g_{m}(\underset{=}{x})=0\). Then \(A \cup B\) is the set
```



```
    (iii) Let \(A_{\alpha}, \alpha \in I\), where \(I\) is any indexing set, be a
collection of algebraic sets. Suppose that \(A_{\alpha}=A\left(\Im_{\alpha}\right)\), where \(\Im_{\alpha}\)
is an ideal in \(k[\underset{\sim}{x}]\). We claim that
\[
\begin{equation*}
\bigcap_{\alpha \in \mathrm{I}} \mathrm{~A}\left(\Im_{\alpha}\right)=\mathrm{A}\left(\sum_{\alpha \in \mathrm{I}} \Im_{\alpha}\right), \tag{1.1}
\end{equation*}
\]
```

where $\sum \mathcal{S}_{\alpha}$ is the ideal consisting of sums $f_{1}\left(\underset{=}{(X)}+\ldots+f_{\ell}(X)\right.$ $\alpha \in \mathrm{I}$
with each $f_{i}(X)$ in \mathcal{J}_{α} for some $\alpha \in I$. To prove (1.1), suppose that $x \in \bigcap_{\alpha \in I} A\left(\Im_{\alpha}\right)$. Then for each $\alpha \in I, x \in A\left(\mathcal{S}_{\alpha}\right)$, whence $f(\underset{\underline{x}}{ })=0 \quad$ if $f \in \tilde{J}_{\alpha}$. Therefore $f(\underset{=}{x})=0 \quad$ if $f \in \sum_{\alpha} \mathcal{J}_{\alpha}$. Hence $x \in A\left(\underset{=}{\sum} \Im_{\alpha}\right)$. Conversely, if $\quad x \in A\left(\sum \mathfrak{J}_{\alpha}\right)$, then $\underset{=}{\alpha \in(x)}=0$ if $\alpha \in \mathrm{I} \quad \alpha \in \mathrm{I}$ $f \in \sum \mathcal{J}_{\alpha}$. So for any $\alpha \in I$, if $f \in \mathcal{J}_{\alpha}$, then $f(\underset{\sim}{x})=0$. Thus, $\alpha \in \mathrm{I}$
$\underset{\underline{x}}{x} A\left(\mathfrak{S}_{\alpha}\right)$ for all α, or $\underset{=}{x} \in \cap A\left(\mathfrak{F}_{\alpha}\right)$. This proves (1.1). It $\alpha \in I$
follows that $\cap A_{\alpha}=\cap \mathrm{A}\left(\Im_{\alpha}\right)$ is an algebraic set.
In Ω^{n} we can now introduce a topology by defining the closed sets as the algebraic sets. This topology is called the Zariski Topology. As usual, the closure of a set M is the intersection of the closed sets containing M. It is the smallest closed set containing M and is denoted by \bar{M}.

Let M be a subset of Ω^{n}. We write $\Im(M)$ for the ideal of all polynomials $f(\underset{=}{(X)}$ which vanish on M, i.e., all polynomials $f(\underset{=}{(X)}$
such that $f(x)=0$ for every $\underset{=}{x} \in M$. It is clear that if $M_{1} \subseteq M_{2}$, then $\subsetneq\left(M_{1}\right) \supseteq \subsetneq\left(M_{2}\right)$.

THEOREM 1C. $\bar{M}=A(\mathcal{M}(M)$.

Proof: Clearly $A(\Im(M))$ is a closed set containing M. Therefore it is sufficient to show that $A(\mathcal{J}(M))$ is the smallest closed set containing M. Let T be a closed set containing M; say $T=A(3)$. Since $T \supseteq M$, it follows that $J \subseteq \mathcal{J}(T) \subseteq \mathcal{G}(M)$, so that

$$
T=A(\mathcal{F}) \geq A(G(M))
$$

Remark: If S is an algebraic set, then it follows from Theorem 1c that $S=A G(S)$.

If \mathfrak{A} is an ideal, define the radical of \mathcal{M}, written $\sqrt{\mathbb{L}}$, to consist of all $f(\underset{=}{X})$ such that for some positive integer $m, f^{m}(X) \in \mathscr{N}$. The radical of \mathscr{A} is again an ideal. For if $f(\underset{=}{X}), g(\underset{=}{X}) \in \sqrt{\mathscr{A}}$, then there exist positive integer m, ℓ such that $f^{m}(\underset{\sim}{x}), g^{\ell}(X) \in \mathbb{N}$. Thus by the Binomial Theorem, $(f(\underset{=}{X}) \pm g(X))^{m+\ell} \in \mathfrak{M}$, so that $f(\underset{=}{X}) \pm g(X) \in \sqrt{=}$. Also, for any $h(X)$ in $k[\underset{=}{X}],(h(X) f(\underset{=}{X}))^{m} \in \mathbb{M}$, so that $h(\underset{=}{X}) f(\underset{=}{X}) \in \sqrt{M 1}$.

If B is a prime ideal, then $\sqrt{\mathfrak{B}}=\mathcal{B}$, since if $f(\underset{=}{X}) \in \sqrt{B}$,
then $f^{m}(\underset{=}{X}) \in \mathbb{P}$, which implies that $f(X) \in \mathbb{X}$.

THEOREM 1D. Let \mathscr{U} be an ideal in $k[\underline{X}]$. Then

$$
\tilde{J}(A(H))=\sqrt{2} .
$$

Example: Let $k=\mathbf{Q}, \Omega=\mathbf{C}, \mathrm{n}=2$, and \vec{Z} the principal ideal
generated by $f\left(X_{1}, X_{2}\right)=\left(X_{1}^{2}+x_{2}^{2}-1\right)^{3}$. Then $A(N)$ is the unit circle, and $\mathcal{J}(\mathrm{A}(\mathrm{M}))=\left(\mathrm{X}_{1}^{2}+\mathrm{X}_{2}^{2}-1\right)$. Thus $\sqrt{\mathfrak{A}}=\left(\mathrm{X}_{1}^{2}+\mathrm{X}_{2}^{2}-1\right)$, the ideal generated by $X_{1}^{2}+X_{2}^{2}-1$.

Before proving Theorem 1D we need two lemmas.
LIMMA lE. Given a prime ideal $B \neq k\{\underline{X}\}$, taere exists an $\underset{=}{x} \in \Omega^{n}$ with $\mathfrak{S}(\underline{x})=\mathfrak{B}$.

Proof. Form the natural homomorphism from $k[x]$ to the quotient ring $k[\underline{x}] / \mathcal{F}$. Since $\mathcal{B}\} \mathbf{k}=\{0\}$, the natural homomorphism is an isomorphism on k. Thus we may consider $k[\underset{\sim}{x}] /$ as an extension of k, and the natural homomoxphism restricted to k becomes the identity map. Thus our homomorphism is a k-homomorphism. Let the image of X_{i} be $\vec{F}_{i}(i=1, \ldots, n)$. The natural homomorphism is then A homomorphism from $k\left[X_{1}, \ldots, X_{n}\right]$ onto $k\left[\xi_{1}, \ldots, \xi_{n}\right]$ with kernel \mathfrak{B}. Since B was a prime ideal, $k\left[\xi_{1}, \ldots, \xi_{n}\right]$ is an integral domain.

Try to replace ξ_{i} by $x_{i} \in \Omega$. If, say, ξ_{1}, \ldots, ξ_{d} are algebraically independent over k with $\xi_{d+1}, \ldots, \xi_{n}$ algebraically dependent on them, choose $x_{1}, \ldots, x_{d} \in \Omega$ algebraically independent over k. Then $k\left(\xi_{1}, \ldots, \xi_{d}\right)$ is k-isomorphic to $k\left(x_{1}, \ldots, x_{d}\right)$. Also, ξ_{d+1} is algebraic over $k\left(\xi_{1}, \ldots, \xi_{d}\right)$, and so satisfies a certain irreducible equation with coefficients in $k\left(\xi_{1}, \ldots, \xi_{d}\right)$. Choose x_{d+1} in Ω such that it satisfies the corresponding equation as ξ_{d+1} but with coefficients in $k\left(x_{1}, \ldots, x_{d}\right)$. Then $k\left(\xi_{1}, \ldots, \xi_{d+1}\right)$ is k-isomorphic to $k\left(x_{1}, \ldots, x_{d+1}\right)$. There is a k-isomorphism with $\xi_{i} \rightarrow x_{i}(i=1, \ldots, d+1)$.

Continuing in this manner, we can find $x_{1}, \ldots, x_{n} \in \Omega$ such that $k\left(\xi_{1}, \ldots, \xi_{n}\right)$ is k-isomorphic to $k\left(x_{1}, \ldots, x_{n}\right)$. There is an isomorphism $\alpha \quad$ with $\quad \alpha\left(\xi_{i}\right)=x_{i} \quad(i=1, \ldots, n)$.

Composing the natural homomorphism with the isomorphism α we obtain a homomorphism

$$
\varphi: \mathrm{k}\left[\mathrm{x}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right] \rightarrow \mathrm{k}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]
$$

with kerne1 \mathcal{F}. Write $\underset{=}{x}=\left(x_{1}, \ldots, x_{n}\right)$.

Now $\underset{\mathcal{J}}{(\underset{\sim}{x})}=\mathbb{B}$, for $\underset{=}{(x)}=0$ precisely if $\varphi(\underset{=}{(x)})=0$, which is true if $f(X) \in \mathbb{P}$.

LEMMA 1F. Let \mathbb{S} be a non-empty subset of $k[X]$ which is closed under multiplication and doesn't contain zero. Let P be an ideal
which is maximal with respect to the property that $B \cap \mathbb{C}=\phi \cdot$ Then \mathcal{B} is a prime ideal.

Proof: Suppose $f(\underset{=}{X}) g(\underset{=}{X}) \in \Re$ but that $f(\underset{=}{X})$ and $g(\underset{=}{X})$ are not in \mathfrak{B}. Let $\mathscr{U}=(\mathbb{P}, f(\underset{=}{X}))^{*}$, so that \mathscr{U} properly contains \mathcal{B}. Since \mathbb{B} is maximal with respect to the property that $\mathbb{B} \subseteq=\varnothing$, it follows that $\mathfrak{U} \cap \underset{5}{5} \neq \phi$. So there exists a $c(\underset{=}{X})=p(\underset{=}{X})+h(\underset{=}{X}) f(\underset{=}{(X)}$, where $c(\underset{\sim}{X}) \in \mathbb{S}, p(\underset{=}{X}) \in \mathbb{P}, h(\underset{=}{X}) \in k[\underset{=}{X}]$. Similarly, there exists a $c^{\prime}(\underset{\sim}{X})=p^{\prime}(\underset{\sim}{X})+h^{\prime}(\underset{=}{X}) g(\underset{=}{X})$, where $c^{\prime}(X) \in \mathbb{S}, p^{\prime}(\underset{\sim}{X}) \in P, h^{\prime}(\underset{=}{X}) \in k[\underline{X}]$. Then

$$
c^{\prime}(\underset{\sim}{X}) c(X)=\left(\mathrm{p}^{\prime}(\underset{=}{\mathrm{X}})+\mathrm{h}^{\prime}(\underset{=}{\mathrm{X}}) \mathrm{g}(\underset{=}{\mathrm{X})})(\mathrm{p}(\underset{=}{\mathrm{X}})+\mathrm{h}(\underset{=}{\mathrm{X}}) \mathrm{f}(\underset{=}{\mathrm{X}})) \in \mathbb{P} .\right.
$$

However, since \mathbb{S} is closed under multiplication, $c^{\prime}(\underset{\sim}{X}) \mathbf{c}(\underset{\sim}{X}) \in \mathbb{E}$, contradicting the hypothesis that $B \cap \mathbb{S}=\varnothing$.

Proof of Theorem $l_{D}:$ Suppose $f \in \sqrt{\sqrt{2}}$, so that there exists a positive integer m with $f^{m} \in \mathfrak{N}$. Thus for every $\underset{=}{x} \in A(N)$, $f^{m}(\underset{=}{x})=0$. Hence $f(\underset{\underline{x}}{x})=0$ for every $\underset{\underline{x}}{ } \in A(\mathfrak{W})$. Therefore $f(x) \in S(A(0))$, and $\sqrt{2} \subseteq \Im(A(1))$.

Suppose $f \notin \sqrt{\mathscr{M}}$. If \mathbb{C} is the set of all positive integer powers of f, then $\mathbb{S} \cap \mathcal{M}=\phi$; also \mathbb{S} does not contain zero. Let \mathfrak{B} be an ideal containing $\&$ which is maximal ${ }^{\dagger}$ with respect to the property that $\mathbb{S} \cap \mathfrak{B}=\varnothing$. By Lemma $1 F, \mathfrak{B}$ is a prime ideal. By Lemma 1E, there exists a point $\underset{=}{x} \in \Omega^{n}$ such that $B=\mathcal{Y}(\underset{\underline{x})}{\underline{n}}$. Since $f \notin \mathbb{B}, f(\underset{\underline{x}}{(x)} \neq 0$. Also, $(\underset{=}{x})=A(\underset{\mathcal{S}}{(x)})=A(\mathbb{B}) \subseteq A(\mathfrak{A})$, so that $\underset{\underline{x}}{x} \in A(\mathfrak{A})$. It follows that $f \notin \mathfrak{J}(\mathrm{~A}(\mathfrak{X}))$. Thus $\mathfrak{J}(\mathrm{A}(\mathfrak{M})) \subseteq \sqrt{2}$.
†) The existence of such an ideal is guaranteed by Theorem la.

* the ideal generated by p and $f(X)$.

> Suppose S is an algebraic set. We call S reducible if $S=S_{1} \cup S_{2}$, where S_{1}, S_{2} are algebraic sets, and $S \neq S_{1}, S_{2}$. Otherwise, we call S irreducible.

Example: Let $k=\mathbb{Q}, K=\mathbb{C}, n=2$, and let \mathcal{F} be the ideal generated in $k\left[X_{1}, x_{2}\right]$ by the polynomial $f\left(X_{1}, X_{2}\right)=x_{1}^{2}-x_{2}^{2}$. Then $S=A(S)$ is the set of all $\underset{=}{x} \in C^{2}$ such that $x_{1}^{2}-x_{2}^{2}=0$. If S_{1} is the set of all $\underset{=}{x} \in \mathbb{C}^{2}$ with $x_{1}+x_{2}=0$, and S_{2} is the set of all $\underset{=}{x} \in \mathbb{C}^{2}$ with $x_{1}-x_{2}=0$, then $S=S_{1} \cup S_{2}$, and $S_{1} \neq S \neq S_{2}$. Hence S is reducible.

THEOREM 1G. Let S be a non-empty algebraic set. The following four conditions are equivalent:
(i) $S=(\underset{=}{\bar{x}})$, i.e. S is the closure of a single point $\underset{=}{x}$,
(ii) S is irreducible,
(iii) $\mathcal{J}(S)$ is a prime ideal in $k[\underset{N}{\mathrm{x}}]$,
(iv) $S=A(P)$, where B is a prime ideal in $k[\underset{=}{X}]$.

Proof: (i) \Rightarrow (ii), Suppose $S=A \| B$, where A and B are algebraic sets, and $A \neq S \neq B$. We have $x \in S=A \cup B$. We may suppose that, say, $\underset{=}{x} \in A$. Then $S=(\underset{=}{\bar{x}}) \subseteq \bar{A}=A$, whence $S=A$, which is a contradiction.
(ii) \Rightarrow (iii), Suppose that $\mathcal{J}(S)$ is not prime. Then we would have $f(\underset{=}{X}) g(X) \in \mathcal{X}(S)$ with neither $f(X)$ nor $g(X)$ in $\mathcal{S}(S)$. Let $\mathfrak{M}=G(S), f(X)$) (i.e. the ideal generated by $\mathcal{S}(S)$ and $f(X)$). Let $B=G(S), g(X))$ Let $A=A(\mathbb{H}), B=A(B)$. In view of $S=A(S))$ and $\mathfrak{U} \supseteq \mathcal{Y}(S)$, we have $A \subseteq S$. But $A \neq S$ since $f \in \mathcal{S}(A)$ and
f\& $\mathcal{Z}(\mathrm{S})$. Thus $\mathrm{A} \varsubsetneqq \mathrm{S}$. Similarly, $\mathrm{B} \varsubsetneqq \mathrm{S}$. But we claim that $S=A \cup B$. Clearly $A \cup B \subseteq S$. On the other hand, if $\underset{=}{x} \in S$, then $f(\underset{\sim}{x})(\underline{x}(x)=0$. Without loss of generality, let us assume that $f(x)=0$. Then $\underset{=}{x}$ is a zero of every polynomial of $2 f$, se that $\underset{=}{x} \in A$. Therefore $S \subseteq A \cup B$. Thus $S=A \cup B$, with $A \neq S \neq B$. This contradicts the irreducibility of S.
(iii) \Rightarrow (iv), Set $P=\mathcal{Y}(S)$. Then $S=A(\mathcal{G}(S))=A(B)$.
(iv) \Rightarrow (i). Choose \underline{x} according to Lemma 1 E with $\mathcal{Y}(\underline{x})=\mathrm{p}$.

Then $S=A(\mathfrak{B})=A(\mathcal{I}(\underline{\underline{x}}))=(\underline{\underline{X}})$. The proof of Theorem lG is complete.

A set S satisfying any one of the four equivalent properties of Theorem 1 G is called a variety. (More precisely, it is a k-variety.) If V is a variety, $\underset{=}{x} \in V$ is called a generic point of V if $V=(\underset{=}{(\underset{x}{x}})$.

COROLLARY 1H. There is a one to one correspondence between the collection of all k - varieties V in Ω^{n} and the collection of all prime ideals $\mathcal{P} \neq k[\underline{X}]$ in $k[\underset{=}{X}]$, given by

$$
\mathrm{v} \stackrel{\alpha}{\rightarrow} \underset{P}{\beta}=\mathcal{F}(\mathrm{V}) \quad \text { and } \quad \underset{\rightarrow}{\beta} \mathrm{v}=\mathrm{A}(\underset{P}{ })
$$

Proof: Let V be a variety in Ω^{n}; then $v \xrightarrow{\alpha} \Im(V) \xrightarrow{\beta} A(\Im(V))=V$. Also, if β is a prime ideal in $k[\underset{=}{x}]$, then $\mathcal{P} \xrightarrow{\beta} A(\beta) \xrightarrow{\alpha} \mathcal{G}(A(\beta))=\sqrt{\beta} \beta=\beta$

Examples: (1) Let $S=\Omega^{n}$. Now $\Im\left(\Omega^{n}\right)=(0)$, a prime ideal. Suppose $\underset{=}{x}=\left(x_{1}, \ldots, x_{n}\right)$ is of transcendence degree n, i.e. the n
coordinates are algebraically independent over k. Then $\mathcal{J}(\underset{=}{x})=(0)$, so $(\underset{\sim}{x})=A(\mathcal{Y}(\underset{\sim}{x}))=A(0))=\Omega^{n}$. So any point of Ω^{n} of transcendence degree n over k is a generic point of Ω^{n}.
(2) Let $k=\mathbb{Q}, \Omega=\mathbb{C}, n=2$. Let \mathfrak{B} be the principal ideal generated by $f\left(X_{1}, X_{2}\right)=x_{1}^{2}+x_{2}^{2}-1 . \quad B$ is a prime ideal since f is irreducible. Thus $A(\beta)$, i.e. the unit circle, is a variety choose $x_{1} \in \Omega$ and transcendental over $Q . \operatorname{Pick} x_{2} \in \Omega$ with $x_{2}^{2}=1-x_{1}^{2}$. Then the point $\underset{=}{x}=\left(x_{1}, x_{2}\right)$ belongs to $A(B)$. In fact, $\underset{\underline{x}}{ }$ is a generic point of $A(\beta)$:

To see this, it will suffice to show that $\mathfrak{J}(\underset{\sim}{x})=\left(X_{1}^{2}+X_{2}^{2}-1\right)$, i.e. the principal ideal generated by $x_{1}^{2}+X_{2}^{2}-1$. If $g\left(X_{1}, X_{2}\right) \in \mathfrak{S}(\underset{=}{x})$, that is, if $g\left(x_{1}, x_{2}\right)=0$, then $g\left(x_{1}, x_{2}\right)$ is a multiple of $X_{2}^{2}-1+x_{1}^{2}$, since x_{2} is a root of $x_{2}^{2}-1+x_{1}^{2}$, which is irreducible over $Q\left(x_{1}\right)$. More precisely,

$$
g\left(x_{1}, x_{2}\right)=\left(x_{2}^{2}-1+x_{1}^{2}\right) h\left(x_{1}, x_{2}\right)
$$

where $h\left(X_{1}, X_{2}\right)$ is a polynomial in X_{2} and is rational in X_{1}. Since x_{1} was transcendental, we get

$$
g\left(X_{1}, X_{2}\right)=\left(X_{1}^{2}+X_{2}^{2}-1\right) h\left(X_{1}, X_{2}\right)
$$

In view of the unique factorization in $Q\left[x_{1}\right]$, it follows that $h\left(X_{1}, X_{2}\right)$ is in fact a polynomial in X_{1}, X_{2}. Thus $\underset{=}{(x)}=\left(X_{1}^{2}+X_{2}^{2}-1\right)$.
(3) Let $k=Q, \Omega=\mathbf{C}, \mathrm{n}=2$. Let \mathfrak{P} be the principal ideal generated by $f\left(X_{1}, X_{2}\right)=X_{1}^{2}-X_{2}$. Then $A(\$)$ is irreducible and is a parabola. Choose $x_{1} \in \Omega$ and transcendental over Q, and put $x_{2}=x_{1}^{2}$. Then $\underset{=}{x}=\left(x_{1}, x_{2}\right)$ lies in $A(B)$. An argument similar to
the one given in (2) shows that $\underset{=}{x}$ is a generic point of $A(\beta)$. For example, Lindemann's Theorem says that e is transcental over \mathbb{Q}, and therefore $\left(e, e^{2}\right)$ is a generic point of $A(P)$.
(4) Let $k=\Omega, \Omega=\mathbb{C}$. Let \mathbb{Q} be the principal ideal
$\mathfrak{M}=\left(X_{1}^{2}-X_{2}^{2}\right)$. Then as we have seen above, $A(\mathfrak{M})$ is reducible and is therefore not a variety.
(5) Consider a linear manifold M^{d} given by a parameter
representation

$$
x_{i}=b_{i}+a_{i 1} t_{1}+\cdots+a_{i d} t_{d} \quad(1 \leqq i \leqq n)
$$

Here the b_{i} and the $a_{i j}$ as given elements of k, with the ($d \times n$) matrix $\left(a_{i j}\right)$ of rank d. As t_{1}, \ldots, t_{d} run through $\Omega, x=\left(x_{1}, \ldots, x_{n}\right)$ runs through M^{d}. It follows from linear algebra that M^{d} is an algebraic set. (It is a "d-dimensional linear manifold". See also §2 about the notion of dimension). In fact M^{d} is a variety:

Choose $\eta_{1}, \ldots, \eta_{d}$ algebraically independent over k. Put

$$
\xi_{i}=b_{i}+a_{i 1} \eta_{1}+\cdots+a_{i d} \eta_{d} \quad(1 \leq i \leq n)
$$

and $\xi_{\underline{\xi}}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \Omega^{n}$. Now $\underline{\underline{\xi}}_{\underline{n}} \in M^{d}, \quad$ so $(\overline{\underline{\xi}}) \subseteq M^{d}$.
Conversely, if $f(\underline{\underline{\underline{E}}})=0$, then
$f\left(b_{1}+a_{11} T_{1}+\cdots+{ }_{1 d} T_{d}\right.$,

$$
\left.b_{2}+a_{21} T_{1}+\cdots+a_{2 d} T_{d}, \cdots, b_{n}+a_{n 1} T_{1}+\cdots+a_{n d} T_{d}\right)=0,
$$

where T_{1}, \ldots, T_{d} are variables. Thus if $\underset{=}{x} \in M^{d}$, then $f(\underset{=}{x})=0$. So every $\underset{=}{x} \in M^{d}$ lies in $A(\mathcal{G}(\underline{\xi}))=(\underline{\underline{G}})$. Therefore we have shown that $M^{d}=(\bar{S})$, or that M^{d} is a variety.
(6) Take $k=\mathbb{Q}, \Omega=\mathbb{C}, \mathrm{n}=2$, and \mathbb{Q} the principal ideal generated by $f\left(X_{1}, X_{2}\right)=X_{1}^{2}-2 X_{2}^{2}$. over $k=Q$, this polynomial is irreducible. Thus \mathfrak{A} is a prime ideal, and $A(\mathbb{M})$ is a variety. However, if we take $\mathrm{k}^{\prime}=Q(\sqrt{2})$, then $f\left(X_{1}, X_{2}\right)$ is no longer irreducible over k^{\prime}, so that M is no longer a prime ideal in $\mathrm{k}^{\prime}\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right]$, and $\mathrm{A}(\mathfrak{U})$ is no longer a variety.

This prompts the definition: A variety is called an absolute variety if it remains a variety over every algebraic extension of k.

THEOREM 1I. Every non-empty algebraic set is a finite union of varieties.

Proof: We first show that every non-empty collection 5 of algebraic sets has a minimal element. For if we form all ideals $\mathfrak{J}(S)$, where $S \in \mathbb{S}$, there is by Theorem 1 A a maximal element of this nonempty collection of ideals. Say $\mathcal{G}\left(\mathrm{S}_{0}\right)$ is maximal. We claim that $\mathrm{S}_{0} \in \mathbb{\mathbb { L }}$ is minimal. For if $\mathrm{S}_{1} \subseteq \mathrm{~S}_{0}$ where $\mathrm{S}_{1} \in \mathbb{S}$, then $\mathfrak{J}\left(\mathrm{S}_{1}\right) \supseteq \mathfrak{J}\left(\mathrm{S}_{0}\right)$; but since $\mathfrak{J}\left(S_{0}\right)$ is maximal, $\mathfrak{F}\left(S_{1}\right)=\mathfrak{J}\left(S_{0}\right)$. Thus $S_{1}=A\left(\mathcal{Y}\left(S_{1}\right)\right)$ $=A\left(\mathscr{S}\left(\omega_{0}\right)\right)=S_{0}$.

Suppose that Theorem li is false. Let $\sqrt{5}$ be the collection of algebraic sets for which Theorem lI is false. There is a minimal element S_{0} of © If S_{0} were a variety, then the theorem would be true for S_{0}. Hence S_{0} is reducible. Let $S_{0}=A \cup B$, where A, B are algebraic sets, with $A \neq S_{0} \neq B$. Since S_{0} is minimal and $A \varsubsetneqq S_{0}, B \varsubsetneqq S_{0}$, the theorem is true for A, B. Hence, we can write $A=V_{1} \cup \ldots \cup V_{m}$, and $B=W_{1} \cup \ldots \cup W_{\ell}$, where $V_{i}(1 \leq i \leq m)$ and $W_{j}(1 \leq j \leq \ell)$ are varieties. Thus

$$
S_{0}=A \cup B=v_{1} \cup \ldots \cup v_{m} \cup w_{1} \cup \ldots \cup w_{\ell}
$$

contradicting our hypothesis that $S_{0} \in \mathbb{E}$.
It is clear that there exists a representation of S as $s=v_{1} \cup \ldots U v_{t}$ where $v_{i} \neq v_{j}$ if ifj.

THEOREM $1 J$ Let S be a non-empty algebraic set. The representation of S as

$$
s=v_{1} U \ldots U v_{t}
$$

where V_{1}, \ldots, V_{t} are varieties with $V_{i} \nsubseteq V_{j}$ if $i \neq j$, is unique.

Proof: Exercise.

The V_{i} in the unique representation of S given in Theorem l_{J} are called the components of S.

Example: Let $k=\mathbb{Q}, \Omega=\mathbb{C}, n=2$, and $S=A\left(\left(X_{1}^{2}-X_{2}^{2}\right)\right)$. Let $\quad V_{1}=A\left(\left(X_{1}-X_{2}\right)\right)$ and $V_{2}=A\left(\left(X_{1}+X_{2}\right)\right)$; then $S=V_{1} \cup V_{2}$. Here V_{1}, V_{2} are two intersecting lines.

Finally we introduce the following terminology and notation.
We say $\underline{\underline{y}}$ is a specialization of $\underset{\sim}{x}$ and write

$$
\stackrel{\mathrm{x}}{=} \rightarrow \underset{\underline{y}}{\underline{y}},
$$

if $\underset{\underline{y}}{\in} \in(\overline{\underline{x}})$. This holds precisely if $f(\underline{\underline{y}})=0$ for every $f(\underset{=}{x}) \in k[\underline{x}]$ with $f(\underset{=}{x})=0$. It is immediately seen that \rightarrow is transitive, i.e. that

$$
\underset{=}{x} \rightarrow \underset{\underline{y}}{\underline{y}} \text { and } \underset{=}{y} \rightarrow \underset{\sim}{z} \text { implies that } \underset{=}{x} \rightarrow \underset{=}{z} .
$$

If both $\underset{=}{x} \rightarrow \underline{\underline{y}}$ and $\underset{\underline{y}}{\underline{y}} \underset{=}{x}$, then we write $\underset{=}{x} \nrightarrow \underline{\underline{y}}$. This is equivalent
with the equation $(\bar{x})=(\bar{y})$.

Example: Let $\underset{=}{x}=\left(e, e^{2}\right)$ and $\underline{\underline{y}}=(1,1)$. Then $\underset{=}{x} \rightarrow \underline{\underline{y}}$. For as we saw in example (3) below Theorem $1 G$, the point $\underset{=}{x}$ is a generic point of the parabola $x_{2}-x_{1}^{2}=0$, and $\underline{\underline{y}}$ lies on this parabola.
§2. Dimension.
Let $x \in \Omega^{n}$. The transcendence degree of $\underset{=}{x}$ over k is the maximum number of algebraically independent components of $\underset{=}{x}$ over k. This clearly is equal to the transcendence degree of $k(\underset{=}{x}$) over k. We have

$$
0 \leq \operatorname{tr} . \operatorname{deg} . x \leq n
$$

THEOREM 2A. Suppose $\underset{\sim}{x} \rightarrow \underline{\underline{y}}$ Then
(i) tr. deg. $\underline{\underline{y}} \leq \underline{t r} \cdot \underline{\operatorname{deg}} \cdot \underline{x}$.

Proof: (i) Induction on n. If $n=1$, and if trans. deg. $\underset{=}{x}=1$,
 is algebraic over k. In this case, since $\underset{\underline{x}}{\underline{y}} \underset{\underline{y}}{ }$, the components of $\underset{\underline{y}}{ }$ satisfy the algebraic equations satisfied by the components of x, and tr. deg. $\underline{\underline{y}}=0$.

To show the induction step, let d be the transcendence degree of $\stackrel{x}{=}$. We may assume that $d<n$. We may also assume that tr. deg. $\underline{\underline{y}} \geq d$. Without loss of generality, we assume that y_{1}, \ldots, y_{d} are algebraically independent over k. Since $\underset{=}{x}=\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(y_{1}, \ldots, y_{n}\right)=\underline{\underline{y}}$, it follows that $\left(x_{1}, \ldots, x_{d}\right) \rightarrow\left(y_{1}, \ldots, y_{d}\right)$. By induction, and since
$\mathrm{d}<\mathrm{n}$, the elements $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}$ are also algebraically independent over k. Let $d<i \leq n$. Then x_{i} is algebraically dependent on x_{1}, \ldots, x_{d}. So x_{i} satisfies some non-trivial equation

$$
x_{i}^{a} g_{a}\left(x_{1}, \ldots, x_{d}\right)+x_{i}^{a-1} g_{a-1}\left(x_{1}, \ldots, x_{d}\right)+\ldots+g_{0}\left(x_{1}, \ldots, x_{d}\right)=0
$$

Since $\underset{\underline{x}}{\underline{x}} \underline{\underline{y}}$, it follows that

$$
y_{i}^{a} g_{a}\left(y_{1}, \ldots, y_{d}\right)+y_{i}^{a-1} g_{a}\left(y_{1}, \ldots, y_{d}\right)+\ldots+g_{0}\left(y_{1}, \ldots, y_{d}\right)=0
$$

Thus y_{i} is algebraically dependent on y_{1}, \ldots, y_{d}. This is true for any i in $d<i \leq n$. So tr. deg. $\underline{\underline{y}} \leq d$.
(ii) If $\underset{=}{x} \underset{\underline{y}}{\underline{y}}$, then it follows from part (i) that tr. deg. $\underset{\underline{x}}{x}=t r . \operatorname{deg} . \underline{y}$.

Suppose $\underset{=}{x} \rightarrow \underset{\underline{y}}{ }$ and tr. deg. $\underset{=}{x}=\operatorname{tr}$. deg. $\underline{\underline{y}}$. Let the common transcendence degree be d. We may assume without loss of generality that the first d coordinates y_{1}, \ldots, y_{d} are algebraically independent over k. Then by part (i) and by $\left(x_{1}, \ldots, x_{d}\right) \rightarrow\left(y_{1}, \ldots, y_{d}\right)$, also x_{1}, \ldots, x_{d} are algebraically independent over k. We have to show that $\underset{\underline{y}}{\underline{x}} \underset{=}{x}$, i.e. that if $f(\underset{\underline{y}}{\mathrm{y}})=0$ for $\mathrm{f} \in \mathrm{k}[\underset{\underline{x}}{\mathrm{x}}]$, then $\underset{=}{\mathrm{x}})=0$. Put differently, we have to show that if $f(\underset{\sim}{x}) \neq 0$, then $f(\underline{\underline{y}}) \neq 0$. So let $f(\underset{=}{x}) \neq 0$. Then $f(\underset{=}{x})$ is a non-zero element of $k(\underset{=}{x})$ and $1 / f(\underset{=}{x}) \in \mathrm{k}(\underset{=}{x})$. Now since x_{d+1}, \ldots, x_{n} are algebraic over $k\left(x_{1}, \ldots, x_{d}\right)$, it is well known that

$$
\mathrm{k}(\underset{=}{x})=k\left(x_{1}, \ldots, x_{d}\right)\left[x_{d+1}, \ldots, x_{n}\right],
$$

i.e. $k(\underset{=}{x})$ is obtained from $k\left(x_{1}, \ldots, x_{d}\right)$ by forming the polynomial ring in x_{d+I}, \ldots, x_{n}.

Thus

$$
1 / f\left(\underset{\underline{x}}{\underline{x}}=v\left(x_{1}, \ldots, x_{n}\right) / u\left(x_{1}, \ldots, x_{d}\right),\right.
$$

where $v\left(X_{1}, \ldots, X_{n}\right)$ and $u\left(X_{1}, \ldots, X_{d}\right)$ are polynomials. We have

$$
u\left(x_{1}, \ldots, x_{d}\right)=f(\underset{=}{x}) v(\underset{=}{x}),
$$

which implies that

$$
u\left(y_{1}, \ldots, y_{d}\right)=f(\underline{\underline{y}}) v(\underline{\underline{y}})
$$

in view of $\underset{=}{x} \underline{\underline{y}}$. Now y_{1}, \ldots, y_{d} are independent over k, whence $u\left(y_{1}, \ldots, y_{d}\right) \neq 0$, whence $f(\underline{\underline{y}}) \neq 0$. Our proof is complete.

The dimension of variety V is defined as the transcendence degree of any of its generic points. In view of Theorem 2A, there is no ambiguity. A variety of dimension 1 is called a curve, one of dimension n-1 is called a hypersurface.

Example: Let us consider again the example of the linear manifold M^{d}. We constructed a generic point $\left(\xi_{1}, \ldots, \xi_{n}\right)$ with $k\left(\eta_{1}, \ldots, \eta_{d}\right)$ $=k\left(\xi_{1}, \ldots, \xi_{n}\right)$, where $\eta_{1}, \ldots, \eta_{d}$ were algebraically independent. Thus $\operatorname{tr} . \operatorname{deg} . k\left(\xi_{1}, \ldots, \xi_{n}\right)=d$. Hence in the sense of our definition, M^{d} has dimension d. This agrees with the dimension d assigned to M^{d} in linear algebra.

THEOREM 2B. (i) Let V be a variety and let $\underset{=}{x} \in \underline{w i t h}$ tr. deg. $\underset{=}{x}=\operatorname{dim} V \cdot \underline{T} \quad \underset{=}{x}$ is a generic point of V.
(ii) If $W \subseteq V$ are two varieties, and if $\operatorname{dim} W=\operatorname{dim} V$, then $\mathrm{W}=\mathrm{V}$.

Proof: (i) Let $\underline{\underline{y}}$ be a generic point of V. Then $\underset{\underline{y}}{\underline{x}} \underset{=}{x}$ and $\operatorname{tr} . \operatorname{deg} . \underset{\underline{x}}{x}=\operatorname{tr} . \operatorname{deg} . y$. By Theorem $2 \mathrm{~A}, \underset{\underline{x}}{\mathrm{x}} \leftrightarrow \underset{\underline{y}}{\mathrm{y}}$, so that $\underset{\underline{x}}{(\bar{x})}=(\underline{\underline{y}})=V$.
(ii) Let $\underset{=}{x}$ be a generic point of W. Now $x \in V$, and $t r$. deg. $\underline{x}=\operatorname{dim} V$, so that by part (i), $\underset{\underline{x}}{ }$ is a generic point of V. Thus $(\overline{\mathrm{x}})=\mathrm{W}=\mathrm{V}$.

THEOREM 2C. (i) If $f(\underset{\sim}{X}) \in k[\underset{=}{X}]$ is a non-constant irreducible polynomial, then the set of zeros of $f(\underset{\sim}{(x)}$ is a hypersurface; that is, a variety of dimension $n-1$.
(ii) If S is a hypersurface, then $\mathcal{Y}(S)$ is a principal ideal (f), generated by some non-constant irreducible polynomial $f(\underset{\underline{X}}{ }) \in \mathbf{k}[\underline{X}]$.

Proof: (i) The principal ideal (f) is a prime ideal in $k[\underline{X}]$, so $A((f))$ is a variety. Without loss of generality, suppose X_{n} occurs in $f(\underline{X})$, say $\quad \underset{=}{f(x)}=x_{n}^{a} g_{a}\left(x_{1}, \ldots, x_{n-1}\right)+\ldots+g_{0}\left(x_{1}, \ldots, x_{n-1}\right)$. Choose $x_{1}, \ldots, x_{n-1} \in \Omega$ algebraically independent over k. Choose $x_{n} \in \Omega$ with $f\left(x_{1}, \ldots, x_{n}\right)=0$. Then $\underset{\underline{x}}{x}=\left(x_{1}, \ldots, x_{n}\right) \in A((f))$. Also, tr. deg. $\underset{=}{x}=n-1$. Thus $\operatorname{dim} A((f)) \geq n-1$. On the other hand, $\operatorname{dim} A((f)) \neq n$, by Theorem $2 B$ and since $A((f)) \neq \Omega^{n}$. Hence $\operatorname{dim} A((f))=n-1$. In other words, $A((f))$ is a hypersurface.
(ii) If S is a hypersurface, then $\mathcal{F}(S)$ is a prime ideal. Let $g(X) \in \mathscr{X}(S), g \neq 0$. Since $\mathcal{J}(S)$ is prime, there exists some irreducible factor f of g such that $f(\underset{=}{X}) \in \mathfrak{Y}(S)$. So (f) $\subseteq \mathcal{G}(S)$, whence $A((f)) \supseteq A(\mathfrak{S}(S))=S$. But dim $A((f))=n-1$ by part (i), and $\operatorname{dim} S=n-1$. Therefore by Theorem 2B, $A(f)=S$. Hence

$$
\Im(S)=\Im(A(f))=\sqrt{(f)}=(f)
$$

since (f) is prime.

Examples: (1) Let $k=Q, \Omega=\mathbb{C}, \mathrm{n}=2$ and $\mathrm{f}(\mathrm{X}, \mathrm{Y})=\mathrm{Y}-\mathrm{X}^{2}$. Now f is irreducible. So by Theorem 2C, the set of zeros of f is a hypersurface of dimension 1 . Since $n-1=1$, it is also a curve. The point (e, e^{2}) has transcendence degree 1 and lies on our curve. Hence we see again that it is a generic point of our curve.
(2) Same as above, but with $f(X, Y)=X^{2}+Y^{2}-1$. Again the set of zeros of f (namely the unit circle) is a hypersurface and also a curve.

Let t be transcendental and consider the point

$$
\stackrel{x}{=}=\left(x_{1}, x_{2}\right)=\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right) .
$$

Here $t=\frac{x_{1}}{1-x_{2}}$, whence $k(\underset{=}{x})=k(t)$, so that $\stackrel{x}{=}$ has transcendence degree 1 . Since $\underset{=}{x}$ lies on our curve, it follows that $\underset{=}{x}$ is a generic point of the unit circle. In particular,

$$
\left(\frac{2 e}{e^{2}+1}, \frac{e^{2}-1}{e^{2}+1}\right)
$$

is a generic point of the unit circle.

$$
\begin{aligned}
& \text { THEOREM 2D. Let } n=1+t \text {, let } f_{1}\left(X, Y_{1}\right) \text {, } \\
& f_{2}\left(X, Y_{1}, Y_{2}\right), \ldots, f_{t}\left(X, Y_{1}, Y_{2}, \ldots, Y_{t}\right) \text { be polynomials of the type } \\
& f_{i}\left(X, Y_{1}, \ldots, Y_{i}\right)=Y_{i}^{d_{i}}-g_{i}\left(X, Y_{1}, \ldots, Y_{i}\right), \\
& \text { where } d_{i}>0 \text { and } g_{i} \text { is of degree }<d_{i} \text { in } Y_{i} \text { Let } \mathscr{D}_{1}, \ldots, D_{t} \\
& \text { be algebraic functions with } f_{1}\left(X, \mathfrak{D}_{1}\right)=\ldots=f_{t}\left(X, \mathscr{D}_{1}, \ldots, \mathfrak{Y}_{t}\right)=0 \text {, } \\
& \text { and suppose that }
\end{aligned}
$$

$$
\left[k\left(x, \mathscr{D}_{1}, \ldots, \mathfrak{M}_{t}\right): k(X)\right]=d_{1} d_{2} \ldots d_{t} .
$$

Then the equations

$$
\mathrm{f}_{1}=\mathrm{f}_{2}=\cdots=\mathrm{f}_{\mathrm{t}}=0
$$

define a curve; that is, $\underline{\text { a }}$ variety of dimension 1 .

Examples: (1) Let k be a field whose characteristic does not
equal 2 or 3 . Take $t=2$, so that $n=3$. Consider
$f_{1}\left(X, Y_{1}\right)=Y_{1}^{2}+X^{2}-1, f_{2}\left(X, Y_{1} Y_{2}\right)=Y_{2}^{2}+X^{2}-4 . \quad$ Then $\eta_{1}^{2}=1-X^{2}$, and $\mathfrak{g}_{2}^{2}=4-x^{2}$, or $\eta_{1}=\sqrt{1-x^{2}}$ and $\eta_{2}=\sqrt{4-x^{2}}$. Also,

$$
\begin{equation*}
\left[k\left(x, \sqrt{1-x^{2}}, \sqrt{4-x^{2}}\right): k(x)\right]=4 .^{\dagger} \tag{2.1}
\end{equation*}
$$

By Theorem 2D, the equations $f_{1}=f_{1}=0$ define a curve. This curve is the intersection of two circular cylinders with radii 1,2 , whose axes intersect at right angles.
(2) Same as above, but with $f_{2}\left(X, Y_{1}, Y_{2}\right)=Y_{2}^{2}+X^{2}-1$. In this case $\left[k\left(X, \mathscr{C}_{1}, \mathscr{C}_{2}\right): k(X)\right]=2$. So Theorem 2D does not apply. In fact,
t)

The proof of (2.1) is as follows. Since the characteristic is not 2 or 3 , the four polynomials $1-\mathrm{X}, 1+\mathrm{X}, 2-\mathrm{X}, 2+\mathrm{X}$ are distinct and are irreducible. Hence none of $1-x^{2}, 4-x^{2}$ and $\left(1-x^{2}\right) /\left(4-x^{2}\right)$ is a square in $k(X)$, and each of $\sqrt{1-x^{2}}$, $\sqrt{4-X^{2}}, \sqrt{\left(1-X^{2}\right) /\left(4-x^{2}\right)}$ is of degree 2 over $k(X)$. It will suffice to show that $\sqrt{4-\mathrm{X}^{2}} \notin \mathrm{k}\left(\mathrm{X}, \sqrt{1-\mathrm{X}^{2}}\right)$. Suppose to the contrary that

$$
\sqrt{4-X^{2}}=r(X)+s(X) \sqrt{1-x^{2}}
$$

with rational functions $r(X) s(X)$. We now square and observe that the factor in front of $\sqrt{1-x^{2}}$ must be zero. Thus $2 r(X) s(X)=0$. If $r(X)=0$, then $\left(1-X^{2}\right) /\left(1-X^{4}\right)$ would be a square in $k(X)$, which was ruled out. If $s(X)=0$, then $4-x^{2}$ would be a square, which was also ruled out.

The situation is similar to the one in Corollary 5 B of Chapter II, $\$ 5$, and the exercise below it.

$$
A\left(\left(f_{1}, f_{2}\right)\right)=V_{1} \cup V_{2},
$$

where $\left.V_{1}=A\left(\left(f_{1}, Y_{1}-Y_{2}\right)\right), V_{2}=A\left(f_{1}, Y_{1}+Y_{2}\right)\right)$.
Thus we do not obtain a variety. This algebraic set is the intersection of two circular cylinders of radius 1 whose axes intersect at right angles. Both V_{1} and V_{2} are the intersection of a plane with a circular cylinder; they are ellipses.
(3) Let $k=F_{q}$, the finite field of q elements. Take $t=2$, $n=3$ and $f_{1}\left(X, Y_{1}\right)=Y_{1}^{d}-f(X)$ where $d \mid(q-1)$, and $f_{2}\left(X, Y_{2}\right)=$ $Y_{2}^{q}-Y_{2}-g(X)$. Suppose f_{1}, f_{2} to be ixreducible. Then n_{1}, \mathfrak{m}_{2} with $\mathfrak{D}_{1}^{d}=f(X), \eta_{2}^{q}-\mathfrak{D}_{2}=g(X)$ have

$$
\left[k\left(x, \eta_{1}\right): k(x)\right]=d \quad, \quad\left[k\left(x, \eta_{2}\right): k(X)\right]=q
$$

Since $(d, q)=1$, we have $\left[k\left(X, \mathscr{M}_{1}, \mathscr{D}_{2}\right): k(X)\right]=d q \quad$. Thus $f_{1}=f_{2}=0$ defines a curve. In the same way one sees that if f_{1}, f_{2} both are absolutely irreducible, then $f_{1}=f_{2}=0$ is an absolute curve, i.e., a curve which is an absolute variety.

Proof of Theorem 2D: Pick $\underset{=}{x}=\left(x, y_{1}, \ldots, y_{t}\right) \in \Omega^{n}$, such that the mapping $x \rightarrow x, \mathscr{D}_{i} \rightarrow y_{i}(1 \leq i \leq t)$ yields an isomorphism of $k\left(X, D_{1}, \ldots, M_{t}\right)$ to $k\left(x, y_{1}, \ldots, y_{t}\right)$. We claim that the set of zeros of $f_{1}=f_{i}=\ldots=f_{t}=0$ is the variety $(\underset{=}{(\bar{x})}$. It suffices to show that $\mathcal{J}(\underset{=}{x})=\left(f_{1}, \ldots, f_{t}\right) ;$ for then $(\underset{=}{x})=A(\underset{J}{(x)} \underset{=}{=})=A\left(\left(f_{1}, \ldots, f_{t}\right)\right)$. Clearly, every $f \in\left(f_{1}, \ldots, f_{t}\right)$ vanishes on $\underset{=}{x}$; so ($\left.f_{1}, \ldots, f_{t}\right) \subseteq \mathfrak{S}(x)$. Conversely, we are going to show that

$$
\begin{equation*}
\text { if } f(x)=0, \text { then } f \in\left(f_{1}, \ldots, f_{t}\right) \tag{2.2}
\end{equation*}
$$

We'll show (2.2) by induction on s, for functions
$f=f\left(X, Y_{1}, \ldots, Y_{s}\right)$ where $0 \leqq s \leqq t$. If $s=0$, then $f(x)=0$; but x is transcendental over k, so $f(X)=0$, whence $f \in\left(f_{1}, \ldots, f_{t}\right)$. Next, we show that if (2.2) is true for $s-1$, it is true for s. In $f\left(X, Y_{1}, \ldots, Y_{s}\right)$, if $Y_{s}{ }_{s}$ occurs, replace it by $g_{s}\left(X, Y_{1}, \ldots, Y_{s}\right)$. Do this repeatedly, until you get a polynomial $\hat{\mathrm{f}}\left(\mathrm{X}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{s}}\right.$) of degree $<d_{s}$ in Y_{S}. We observe that $f-\hat{f} \in\left(f_{s}\right)$, and that $\hat{f}(\underline{x})=0$. Suppose

$$
\begin{equation*}
\hat{f}=Y_{s}{ }^{d} s^{-1} h_{d_{s}-1}\left(X, Y_{1}, \ldots, Y_{s-1}\right)+\ldots+h_{0}\left(X, Y_{1}, \ldots, Y_{s-1}\right) . \tag{2.3}
\end{equation*}
$$

Our hypothesis implies that $\left[k\left(x, y_{1}, \ldots, y_{t}\right): k(x)\right]=d_{1} d_{2} \ldots d_{t}$, and we have

$$
k(x) \subseteq k\left(x, y_{1}\right) \subseteq k\left(x, y_{1}, y_{1}\right) \subseteq \ldots \subseteq k\left(x, y_{1}, \ldots, y_{t}\right)
$$

where for each i in $1 \leq i \leq t$, the field $k\left(x, y_{1}, \ldots, y_{i}\right)$ is an extension of degree $\leq d_{i}$ over $k\left(x, y_{1}, \ldots, y_{i-1}\right)$. Hence it is actually an extension of degree d_{i}. In particular, $\left[k\left(x, y_{1}, \ldots, y_{s}\right): k\left(x, y_{1}, \ldots, y_{s-1}\right)\right]=d_{s}$. Since $\hat{I}(\underset{=}{x})=0$, we see from (2.3) that each $h_{j}(\underset{=}{x})=0$. So by induction, each $h_{j} \in\left(f_{1}, \ldots, f_{t}\right)$, hence also $\hat{f} \in\left(f_{1}, \ldots, f_{t}\right)$, and $f \in\left(f_{1}, \ldots, f_{t}\right)$. The proof of (2.2) and therefore the proof of the theorem is complete.
§3. Rational Maps.
A rational function φ on Ω^{n} is an element of $k\left(X_{1}, \ldots, X_{n}\right)$, i.e. of the form $\varphi=a\left(X_{1}, \ldots, X_{n}\right) / b\left(X_{1}, \ldots, X_{n}\right)$, where $a\left(X_{1}, \ldots, X_{n}\right)$, $b\left(X_{1}, \ldots, X_{n}\right)$ are polynomials over k. We may assume that a, b have no common factor.

We say a rational function φ is defined (or regular) at a point $\underset{\sim}{x} \in \Omega^{n}$ if $b(\underset{\sim}{x}) \neq 0$. If φ is defined at $\underset{=}{x}$, put $\varphi(\underset{=}{x})=a(\underset{=}{x}) / b(\underset{=}{x})$. The rational functions φ which are defined at $\underset{=}{x} \in \Omega^{n}$ form a ring consisting of all $a(\underset{=}{X}) / b(\underset{=}{X})$ with $b(\underset{\sim}{x}) \neq 0$. This ring is denoted as $\mathscr{D}_{\underline{x}}$ and is called the local ring of $\underset{=}{x}$. Let \tilde{S}_{x} consist of all $\varphi \in \mathcal{D}_{\underline{X}}^{=}$with $\varphi(\underset{=}{x})=0$. (Thus \Im_{X} consists of all $a(\underset{=}{X}) / b(\underset{=}{X})$ with $\mathrm{b}(\underset{=}{\mathrm{x}}) \neq 0, \mathrm{a}(\underset{=}{\mathrm{x}})=0$.) Then ${\underset{\mathcal{S}}{x}}^{\underline{x}}$ is an ideal in $\mathfrak{Q}_{\underline{x}}$.

LEMMA 3A. (i) If $\underset{=}{x} \rightarrow \underline{y}$, then $\mathcal{D}_{\underline{y}} \subseteq \mathbb{D}_{\underline{x}}$.
(ii) If $\underset{\underline{x}}{\underline{y}} \underline{\underline{y}}$, then $\mathcal{D}_{\underline{x}}=\mathscr{D}_{\underline{y}}$ and $\mathcal{S}_{\underline{x}}=\mathcal{S}_{\underline{\underline{y}}}=$

Proof: Obvious.

THEOREM 3B. (i) $\mathcal{J}_{\underline{x}}$ is a maximal ideal in $\mathcal{D}_{\underline{x}}$, hence $\mathcal{O}_{\underline{x}} \mathcal{S}_{\underline{x}}$ is a field (called the function field of $\underset{=}{x}$).
(ii) $D_{\underline{x}} / S_{x}$ is $k-$ isomorphic to $k(\underset{=}{x})$.

Proof: (i) Let $\varphi \in{\underset{D}{x}}_{\underline{x}}, \varphi \in \mathcal{S}_{\underline{x}}$. Then $\varphi=a(\underset{=}{x}) / b(\underset{=}{(x)}$, where $b(\underset{=}{x}) \neq 0$ and $a(\underset{=}{x}) \neq 0$, and therefore $\frac{1}{\varphi}=b(\underset{=}{X}) / a(X)$ lies in $\mathscr{D}_{\underline{x}}$. Thus every $\varphi \in{\underset{D}{X}}^{x}$ which does not lie in $\mathcal{S}_{\underline{x}}$ is a unit. It follows that $\mathcal{S}_{\underline{x}}$ is a maximal ideal.
(ii) The map $\omega:{\underset{O}{X}}_{\underline{x}} \rightarrow k(\underset{=}{x})$ given by

$$
w(a(\underset{=}{X}) / b(\underset{=}{X}))=a(\underset{=}{x}) / b(\underset{=}{x})
$$

We now come to the definition of a rational function defined on
a variety V. The simplest definition to try would be that a rational
function on V is the restriction to V of a rational function $\varphi(\underset{=}{X})$ on Ω^{n}. However, we want this rational function to be defined for at least some point of V. Hence by Lemma 3A it must be defined for every generic point $\underset{=}{x}$ of V, i.e. it must lie in \mathcal{D}_{x}. Moreover, given two functions $a(\underset{=}{X}) / b(\underset{=}{X})$ and $c(X) / d(\underset{=}{X})$ in \mathscr{S}_{x}, we should regard them as equal functions on V if their restrictions to V are equal. Clearly this is true precisely if their difference lies in $\mathcal{Y}_{\underline{x}}$.

Thus we come to define a rational function on V as an element of $\mathcal{D}_{\underline{x}} \mathcal{Y}_{\underline{x}}$, where $\underset{=}{x}$ is a generic point. Clearly this is independent of the choice of the generic point. $\quad \dot{\nu}_{X}=\mathcal{D}_{V}$ (say) consists of $a(\underset{=}{X}) / b(\underset{=}{X})$ with $b(X) \in J(V)=\underset{=}{\mathcal{X}}(\underset{=}{x})$, and $\Im_{\underline{x}}=\Im_{V}$ (say) consists of $a(\underset{=}{X}) / b(\underset{=}{X})$ with $a(X) \in \mathscr{I}(V), b(X) \in \mathscr{J}(V)$. We say a function
 and if $r(\underset{=}{X})$ lies in the class φ of $\underset{Y}{\mathscr{Y}}$.

Example: Let $n=2, k=Q, \Omega=\mathbb{Q}$, and V the circle $x_{1}^{2}+x_{2}^{2}-1=0$. Let φ be the rational function represented by $\mathrm{X}_{1} / \mathrm{X}_{2}$. Then φ is also represented by $\left(\mathrm{X}_{1}+\mathrm{X}_{1}^{2}+\mathrm{X}_{2}^{2}-1\right) / \mathrm{X}_{2}$ and by $x_{1} /\left(x_{2}+x_{1}^{2}+x_{2}^{2}-1\right)$, for example.

The rational functions defined on V form a field, called the function field of V. This field is denoted $k(V)$. In view of Theorem 3B, the function field is k-isomorphic to $k(\underset{\sim}{x})$ where $\underset{=}{x}$ is any generic point of V.

Let $\psi_{1}^{V}, \ldots, \psi_{n}^{V}$ be the elements of $k(V)$ represented, respectively, by the polynomials X_{1}, \ldots, X_{n}. Then it is clear that

$$
k(V)=k\left(\psi_{1}, \ldots, \psi_{n}^{V}\right)
$$

It is easily seen that a polynomial $f\left(X_{1}, \ldots, X_{n}\right)$ has $f\left(\psi_{1}, \ldots, \psi_{n}^{V}\right)=0$ if and only if $f \in \mathcal{G}(V)$. Hence if $\underset{=}{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a generic point, then there is a k-isomorphism $k(\underset{=}{x}) \rightarrow k(V)$ with $x_{i} \rightarrow \psi_{i}^{V}$ $(i=1, \ldots, n) \quad$.

Example: Let $\mathrm{n}=2, \mathrm{k}=\mathbb{Q}, \Omega=\mathbb{C}$, and V the circle $x_{1}^{2}+x_{2}^{2}-1=0$. We have seen in previous examples that if η is trancendental over Q, then the point $\left.\left(2 \eta / \eta^{2}+1\right),\left(\eta^{2}-1\right) /\left(\eta^{2}+1\right)\right)$ is a generic point for V. Clearly $k(\underset{\sim}{x})=k(M) \cong k(X)$. Thus the function field of the circle is isomorphic to $k(X)$.

A curve is called rational if its function field is $\cong k(X)$. Thus the circle is a rational curve. It can be shown that $\mathrm{x}_{1}^{\mathrm{n}}+\mathrm{x}_{2}^{\mathrm{n}}-1=0$ is not a rational curve if $n>2$ and is not divisible by the characteristic. See Shafarevich (1969), p. 8.

Let φ be a rational function on a variety $V=\overline{(x)}$ and let $\underline{\underline{y}}$ be a point of V. We say that φ is defined at $\underset{\underline{y}}{ }$ if there exists a representative $r(\underset{\sim}{X})=a(\underset{\underline{X}}{ }) / b(\underset{\sim}{X})$ with $b(\underline{\underline{y}}) \neq 0$. If this is the case, set

$$
\varphi(\underline{y})=a(\underline{y}) / b(\underline{\underline{y}}) .
$$

We have to show that this independent of the representative. Suppose that ω is represented by both $a(X) / b(X)$ and by $\hat{a}(X) / \hat{b}(X)$, and that $b(\underline{y}) \neq 0, \hat{b}(\underline{\underline{y}}) \neq 0$. The difference $(a \hat{b}-\hat{a} b) /(b \hat{b})$ represents
the zero rational function on V. Hence $a(\underset{=}{x}) \hat{b}(\underset{=}{x})-\hat{a}(\underset{=}{x}) b(\underset{=}{x})=0$, and since $\underset{\underline{x}}{ } \rightarrow \underline{\underline{y}}$, we have $a(\underset{\underline{y}}{\underline{y})} \hat{b}(\underset{\underline{y}}{(y)}-\hat{a}(\underset{\underline{y}}{\underline{y}}) \underline{\underline{b}}(\underset{\underline{y}}{ })=0$. We conclude that $a(\underline{\underline{y}}) / b(\underline{\underline{y}})=\hat{a}(\underline{\underline{y}}) / \hat{b}(\underline{\underline{y}})$.

Examples: (1) Let $\mathrm{n}=3, \mathrm{k}=\mathbb{Q}, \Omega=\mathbb{C}$, and V the sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1=0$. Let φ be the rational function represented by $1=1 / 1$. put $\underline{\underline{y}}=(1,0,0)$. Now φ is defined at $\underline{\underline{y}}$ and $\varphi(\underline{\underline{y}})=1$. Now φ is also represented by $1 /\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)$. Again the denominator does not vanish at $\underset{=}{y}$. If we use this representation, we again find, as expected, that $\varphi(\underline{\underline{y}})=1$. Finally φ is also represented by $\left(X_{1}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right) /\left(x_{1}-1\right)$. This representative cannot be used to compute $\varphi(\underline{\underline{y}})$, since its denominator vanishes at $\underline{\underline{y}}$.
(2) Let n, k, Ω and V be as above. Let φ be the rational function represented by $1 / X_{3}$. This function φ is certainly defined if $\underline{\underline{y}} \in \mathrm{~V}$ and $\mathrm{y}_{3} \neq 0$. We ask if there is representative of φ which allows us to define $\varphi(\underline{y})$ for some $\underline{\underline{y}}$ with $y_{3}=0$. Let $a(\underset{X}{X}) b(\underset{X}{X})$ be a representative. Then
vanishes on V. Thus $b(\underset{\underline{X}}{x})-a(\underset{=}{X}) X_{3} \in\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}-1\right)$. So $b(\underset{=}{X}) \in\left(X_{3}, X_{1}^{2}+x_{2}^{2}+X_{3}^{2}-1\right)$, and therefore $b(\underline{\underline{y}})=0$, if $\underset{\underline{y}}{\underline{y}} \in V$ and $y_{3}=0$. It follows that φ is defined precisely for those points $\underline{\underline{y}}$ on the sphere which are not on the circle $y_{3}=0$, $\mathrm{y}_{1}^{2}+\mathrm{y}_{2}^{2}-1=0$.

THEOREM 3C. Let ω be a rational function on variety V. The set of points $y \in V$ for which φ is not defined is a proper
algebraic subset of V.

Proof: The set of points where φ is not defined is

$$
\mathrm{S}=\mathrm{V} \cap \bigcap_{\mathrm{b}(\underset{=}{\mathrm{X}})} \mathrm{A}((\mathrm{~b}(\underset{\sim}{\mathrm{X}}))
$$

where the intersection is taken over all $b(\underset{=}{X})$ which occur as a denominator of a representative of φ. Since the intersection of an arbitrary number of algebraic sets is an algebraic set, S is an algebraic set. In addition, S is a proper subset of V, since a generic point of V is not in S.

Let φ be a rational function of a variety V, and let W be a subvariety of V. We say φ is defined on W if φ is defined at a generic point of W.

A rational map $\underline{=}$ from a variety V to Ω^{m} is defined simply as an m-tuple of rational functions $\left(\varphi_{1}, \ldots, \varphi_{m}\right)$. We say φ is defined at $\underline{y} \in V$, if each $\varphi_{i}(\underset{\underline{y}}{ })$ is defined at $\underline{\underline{y}}$. If this is the case, put $\underset{\underline{\varphi}}{\underline{y}}(\underset{y}{y})=\left(\varphi_{1}\left(\underset{\underline{y}}{(y)}, \ldots, \varphi_{n}(y)\right)\right.$. The set of points $\underset{=}{y} \in V$ for which $\underline{\underline{Q}}$ is not defined is the union of the sets of points for which φ_{i} is not defined $(i=1, \ldots, m)$. In view of Theorem 3C , and since a finite union of proper algebraic subsets of a variety is still a proper algebraic subset, the points where $\underline{\underline{q}}$ is not defined are a proper algebraic subset of V.

The image of $\underline{\underline{Q}}$ is defined as the closure of the set of points $\underline{\underline{\varphi}}(\underline{\underline{y}}), \underline{\underline{y}} \in V_{A}$ for which $\underline{\underline{y}}$ is defined.

THEOREM 3D. The image of $\xlongequal{\varphi}$ is a variety W. If $\underset{=}{\underline{x}}$ is a generic point of V, then $\underset{\sim}{\varphi(x)} \underset{=}{(x)}$ a generic point of W.

Proof: Let $V=(\underline{\underline{x}})$. If $\underset{\underline{x}}{\underline{x}} \underset{\underline{y}}{ }$ and if $\underline{\underline{\varphi}}(\underline{\underline{y}})$ is defined, we have to show that $\underline{\underline{\varphi}} \underset{=}{(x)} \rightarrow \underset{\underline{\varphi}}{\underline{y}} \underset{\underline{y}}{ }$. Let $\varphi=\left(\varphi_{1}, \ldots, \varphi_{m}\right)$, and suppose that φ_{i} is represented by $a_{i}(X) / b_{i}\left(\underset{=}{(x)}\right.$ with $b_{i}(\underline{y}) \neq 0$. Let $f(\underline{\underline{\varphi}}(\underset{=}{x}))=0$, and suppose that $f(\underset{=}{U})=f\left(U_{1}, \ldots, U_{m}\right)$ is of degree d_{i} in U_{i}. Put

$$
g\left(U_{1}, \ldots, U_{m}, v_{1}, \ldots, v_{m}\right)=v_{1}^{d_{1}} \ldots v_{m}^{d_{m}} f\left(\frac{U_{1}}{V_{1}}, \ldots, \frac{U_{m}}{\mathrm{v}_{m}}\right)
$$

Since $f\left(a_{1} \underset{=}{(x)} / b_{1}(\underset{=}{x}), \ldots, a_{m}(\underset{=}{x}) / b_{m}(x)\right)=0$, it follows that $\mathrm{g}\left(\mathrm{a}_{1} \stackrel{(x)}{=}, \ldots, \mathrm{a}_{\mathrm{m}}(\mathrm{x}), \mathrm{b}_{1} \stackrel{(\mathrm{x})}{=}, \ldots, \mathrm{b}_{\mathrm{m}} \stackrel{(\mathrm{x})}{=}\right)=0$. But $\underset{=}{\mathrm{x}} \rightarrow \underset{=}{\mathrm{y}}$, so $g\left(a_{1}(\underline{y}), \ldots, a_{m}(y), b_{1}(\underline{y}), \ldots, b_{m}(\underline{y})\right)=0$, and

Since $b_{1}\left(\underset{\underline{y}}{ }{ }^{d}{ }^{1} \ldots b_{m}\left(\frac{y}{y}\right)^{d} \neq 0\right.$, it follows that

$$
f(\underline{\underline{\varphi}}(\underline{y}))=f\left(\frac{a_{1}(\underline{y})}{\underline{b_{1}}(\underline{y})}, \ldots, \frac{a_{m}(\underline{y})}{\underline{b_{m}}(\underline{y})}\right)=0 .
$$

So every polynomial f vanishing on $\underline{\underline{\varphi}}(\underset{\sim}{x})$ also vanishes on $\underline{\underline{\varphi}}(\underline{\underline{y}})$, and $\underline{\underline{\varphi}}(\underset{\underline{x}}{ }) \rightarrow \underline{\underline{\varphi}}(\underline{\underline{y}})$.

Example: Let V be the sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$, and let $\underline{\underline{\varphi}}: V \rightarrow \Omega^{2}$ have a representation as $\underline{\underline{\varphi}}=\left(\left(X_{1}^{2}+X_{2}^{2}\right) / X_{3}^{2},-1 / X_{3}^{2}\right)$. Let $\underline{\underline{\xi}}=\left(\xi_{1}, 5_{2}, 5_{3}\right)$ be a generic point of V. We have

$$
\varphi(\underline{\underline{\xi}})=\left(\frac{\xi_{1}^{2}+\xi_{2}^{2}}{\xi_{3}^{2}},-\frac{1}{\xi_{3}^{2}}\right)=\left(\frac{1}{\xi_{3}^{2}}-1,-\frac{1}{\xi_{3}^{2}}\right)
$$

Thus $\underset{\underline{\varphi}}{\underline{(\xi)}} \underset{=}{ }=\left(\zeta_{1}, \zeta_{2}\right)$ satisfies $\zeta_{1}+\zeta_{2}+1=0$. Since $\underline{\underline{\varphi}}(\underline{\underline{\xi}})$ has transcendence degree 1 , it is in fact a generic point of the line $z_{1}+z_{2}+1=0$. Thus this line is the image of $\underline{\varrho}$. But not every
 and is $\neq(-1,0)$, then if we pick y_{1}, y_{2}, y_{3} in Ω with $y_{3}=1 / \sqrt{-z_{2}}$, $\mathrm{y}_{1}^{2}+\mathrm{y}_{2}^{2}+\mathrm{y}_{3}^{2}-1=0$, we obtain $\underline{(y)}(\underline{y})=\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$. But $\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)=(-1,0)$ is not of the type $\underline{\underline{\varphi}}(\underline{\underline{y}})$. For if $y_{3} \neq 0$, then $\underline{\underline{\varphi}}(\underline{\underline{y}}) \neq(-1,0)$, and if $y_{3}=0$, then $\underline{\underline{(y)}} \underline{\underline{y}}$ is not defined.

THEOREM 3E. Let \subseteq be a rational map from V with image W. Let T be a proper algebraic subset of W. Then the set $L \subseteq V$ consisting of points $\underline{\underline{y}}$ where either $\underline{\text { is not defined or where }}$ $\varphi(\underline{y}) \in T$, is a proper algebraic subset of \underline{V}.

Proof: Suppose W and T lie in Ω^{m}. Suppose T is defined by equations $g_{1}(\underline{\underline{y}})=\ldots=g_{t}(\underline{\underline{y}})=0$, where $\underline{\underline{y}}=\left(y_{1}, \ldots, y_{m}\right)$. Let $g_{i}\left(Y_{1}, \ldots, Y_{m}\right)$ have degree $d_{i j}$ in $Y_{j}(l \leqq i \leqq t, l \leqq j \leqq m)$.

Put

$$
h_{i}\left(Y_{1}, \ldots, Y_{m}, Z_{1}, \ldots, Z_{m}\right)=z^{d_{i l}} \ldots z^{d_{i m}} g_{i}\left(\frac{Y_{1}}{Z_{1}}, \ldots, \frac{Y_{m}}{Z_{m}}\right)
$$

Let

$$
\stackrel{r}{=}=\underline{=}(X)=\left(a_{1}(X) / b_{1}(X), \ldots, a_{m}(\underset{=}{X}) / b_{m}(X)\right)
$$

represent φ and put

$$
\ell_{i}^{\stackrel{r}{=}}(\underset{=}{X})=b_{1} \stackrel{(X)}{=} \ldots b_{m}(X) h_{i}\left(a_{1}(\underset{=}{X}), \ldots, a_{m}(X), b_{1}(\underset{=}{X}), \ldots, b_{m}(\underset{=}{X})\right)(1 \leqq i \leqq t)
$$

Let $\mathrm{L}_{\underline{\mathbf{r}}}$ consist of points $\underline{\underline{y}}$ of V with

$$
\ell_{1}^{\frac{r}{x}}(\underline{y})=\cdots=\ell_{t}^{\frac{y}{2}}(\underline{y})=0 .
$$

We claim that

$$
\begin{equation*}
\mathrm{L}=\cap \underset{\underline{r}}{\mathrm{~L}_{\mathrm{r}}} \tag{3.1}
\end{equation*}
$$

with the intersection taken over all representations $\underset{=}{\mathbf{r}} \underline{\underline{\varphi}}$. In fact if $\underset{\underline{y}}{\underline{f}} \underset{\underline{L_{r}}}{ }$ for some $\underset{=}{r}$, then some $\ell_{i}^{\underline{r}}(\underline{\underline{y}}) \neq 0$, and hence $b_{1}\left(\underline{y} y_{m}\right) \ldots b_{m}(\underline{y}) \neq 0$ and $g_{j}\left(a_{1}(\underline{y}) / b_{1}(\underline{\underline{y}}), \ldots, a_{m}(\underline{y}) / b_{m}(\underline{y})\right) \neq 0$. So $\underline{\underline{\varphi}}(\underline{y})$ is defined and $g_{i}(\underline{\underline{\varphi}}(\underline{\underline{y}})) \neq 0$, so that $\underline{\underline{\varphi}}(\underline{\underline{y}}) \notin \mathrm{T}$ and $\underline{\underline{y}} \neq \mathrm{L}$.
 representation $\underset{=}{r}$ we have $b_{1}\left(\underset{=}{(y)} \ldots b_{m}(\underset{\underline{y}}{(y)} \neq 0\right.$. Moreover, $\underline{\underline{\varphi}}(\underline{\underline{y}}) \notin T$, whence some $g_{i}(\underline{\underline{y}}(\underline{y})) \neq 0$, and $\ell_{i} \stackrel{r}{(y)} \neq 0$. Thus $\underset{\underline{y}}{\underline{y}} k \underline{L}_{\underline{r}}$, and (3.1) is established.

In view of (3.1), L is an algebraic subset of V. Since a generic point of V lies outside each $\underset{\underline{\underline{r}}}{L_{\sim}}$, the set L is a proper algebraic subset.

Example. Let $\mathrm{V} \subseteq \Omega^{3}$ be the sphere $\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}-1=0$ and let $W \subseteq \Omega^{2}$ be the line $z_{1}+z_{2}+1=0$. We have seen above that the map φ represented by $\left(\left(X_{1}^{2}+X_{2}^{2}\right) / X_{3}^{2},-1 / X_{3}^{2}\right)$ has image W. Let $T \subseteq W$ consist of the single point $(0,-1)$. It is easily seen that the set L of points $\underline{\underline{y}}$ where $\underline{\underline{\varphi}}(\underline{\underline{y}})$ is not defined or where $\underline{\underline{\varphi}}(\underline{\underline{y}}) \in T$ consists of $\underline{y} \in V$ with $y_{3}\left(y_{3}^{2}-1\right)=0$.
4. Birational Maps.

```
We define a rational map from a variety \(V\) to a variety \(W\) as a rational map \(\varphi\) of \(V\) whose image is contained in \(W\). We express this in symbols by \(\underline{\underline{L}}: \quad V \rightarrow W\).
Let \(\varphi: V \rightarrow W\) and \(\underset{=}{\Psi}: W \rightarrow U\) be rational maps such that \(\underset{=}{\psi}\) is defined on the image of \(V\) under \(\underline{\underline{\varphi}}\). Thus if \(\underset{=}{x}\) is a generic point of \(V\), then \(\Psi\) is defined on \(\underline{\underline{\varphi}}(x)\). Suppose \(V \subseteq \Omega^{V}, W \subseteq \Omega^{W}\), \(\mathrm{U} \subseteq \Omega^{\mathrm{u}}\), and suppose \(\underline{\underline{Q}}\) is represented by
\[
\begin{equation*}
\left(a_{1}(\underset{=}{X}) / b_{1}(\underset{=}{X}), \ldots, a_{w}(X) / b_{w}(X)\right), \tag{4.1}
\end{equation*}
\]
```

and \mathbb{H} is represented by

$$
\begin{equation*}
\left(c_{1}(\underline{Y}) / d_{1}(\underline{Y}), \ldots, c_{u}(\underline{Y}) / d_{u}(\underline{Y})\right) \tag{4.2}
\end{equation*}
$$

where d_{1}, \ldots, d_{u} are non-zero at $\underset{=}{\underline{(x)}} \stackrel{\text {. Let }}{=} \underline{\underline{\varphi}}$ be the rational map $\quad V \rightarrow U^{\prime}$ represented by
(4.3) $\left.\quad\left(c_{1}\left(a_{1}(\underset{=}{x}) / b_{1}(\underset{y}{X}), \ldots\right) / d_{1}\left(a_{1}(\underset{=}{X}) / b_{1}(\underset{=}{X}), \ldots\right)\right), \ldots, c_{u}(\ldots) / d_{u}(\ldots)\right)$.

Since d_{1}, \ldots, d_{u} are not zero at $\underline{\underline{(x}} \underset{=}{(x)}$, each of the u components
 It is clear that $\underset{\underline{\psi}}{\underline{\varphi}}$ is independent of the special representations (4.1), (4.2) of $\underline{\underline{\varphi}}, \underline{\underline{L}}$, respectively. We call $\underset{\underline{\varphi}}{\underline{\varphi}}$ the composite of $\underset{\underline{\psi}}{\underline{\varphi}} \underline{\underline{\varphi}}$. If $\stackrel{v}{=}$ is a point of V such that $\underline{\underline{\varphi}}$ is defined at $\stackrel{v}{=}$ and $\underset{\underline{\Psi}}{ }$ is defined at $\underset{\underline{\varphi}}{\underline{v}})$, then $\underset{\underline{\Psi}}{\underline{\varphi}}$ is defined at $\stackrel{v}{=}$ and

$$
\underline{\underline{\psi}} \underline{\underline{\varphi}}(\underline{\underline{v}})=\underline{\underline{\psi}}(\underline{\underline{\varphi}}(\underline{\underline{v}})) .
$$

But $\underset{=}{\Psi} \underset{=}{\underline{V}})$ may be defined although perhaps either $\underset{=}{\underline{\varphi}} \underline{\underline{V}}$) is not defined,
or $\underset{=}{\varphi}(\underline{v})$ is defined and $\underset{=}{\underline{(} \varphi(v)} \underset{=}{(v)}$ is not defined.

Examples. (1) Let $V=\Omega^{1}, W=\Omega^{2}, U=V=\Omega^{1}$. Further let $\underline{\underline{Q}}: \quad V \rightarrow W$ be represented by $\left(X^{2}, X\right)$, and let $\underset{=}{\$} W \rightarrow V$ be represented by X_{1} / X_{2}. Then $\underset{=}{\underline{\varphi}}$ is the identity map on V. Thus $\underset{\underline{\varphi}}{\underline{\varphi}}$ is
defined on 0 and $\underset{\underline{\Psi}}{\underline{\varphi}}(0)=0$. However $\underline{\underline{\varphi}}(0)=(0,0)$, and $\underset{\underline{\Psi}}{\underline{\psi}}$ is not defined at $(0,0)$.
(2) Let $\mathrm{k}=\mathbb{Q}$ and $\Omega=\mathbb{C}$. Let $\mathrm{V}=\Omega^{1}$, W the unit circle $x_{1}^{2}+x_{2}^{2}-1=0$, and $U=V=\Omega^{1}$. Further let $\varphi \underline{V} \quad V \rightarrow W$ be represented by $\left(2 X /\left(X^{2}+1\right),\left(X^{2}-1\right) /\left(X^{2}+1\right)\right)$, and let $\underset{=}{\psi}: W$ be represented by $X_{1} /\left(1-X_{2}\right)$. Then $\underset{\underline{\psi}}{\underline{\varphi}}$ is the identity map on V and $\varphi=$ is the identity map on W. In particular, $\underset{\underline{\psi}}{\underline{\varphi}}$ is defined at i and $\underset{\underline{\psi}}{\underline{\varphi}}(i)=i$, but $\underline{\underline{\varphi}}$ is not defined at i.

Exercise. Show that in Example (2) , φ is defined for every point of V except for $i,-i$, and that ψ is defined for every point of W except for $(0,1)$. Further show that every point of V with the exception of $i,-i$ is of the type $\underset{\underline{\Psi}}{\underline{(y)}}$ with $\underline{\underline{y}} \in W$, and every point of W with the exception of $(0,1)$ is of the type $\underset{=}{(x)}$ with $\underset{=}{x} \in V$. Hence if V^{\prime} is obtained from V by deleting $i,-i$ and W^{\prime} is obtained from W by deleting $(0,1)$, then $\underline{\underline{\varphi}}$ and $\underline{\underline{~}}$ provide a 1-1 correspondence between points of V^{\prime} and of W^{\prime}.

A rational map $\underline{\underline{L}}: V \rightarrow W$ is called a bi-rational map (or a bi-rational correspondence) if there exists a rational map $\psi: W \rightarrow V$ such that $\Psi \underline{\underline{\Psi}} \underline{\underline{Q}}$ is the identity on V and $\underline{\underline{\Psi}}$ is the identity on W. Two varieties are bi-rationally equivalent if there exists a bi-rational correspondence between them. We denote this by $V \cong W$. This is an
equivalence relation of varieties. (Note that this relation is defined in terms of the ground field k.

THEOREM 4A. Let $\xlongequal{\varrho}$ be a bi-rational map from V to w with inverse Ψ Then there exist proper algebraic subsets L of V and M of W, such that on the set theoretic differences $V \sim L$ and $W \sim M$, the maps $\underline{\underline{q}}$ and ψ are defined everywhere and are inverses of each other.

Proof: Let S be the subset of V where $\mathscr{=}$ is not defined. Let T be the subset of W where Ψ is not defined. Let L be the subset of V where either $\underline{\underline{L}}$ is not defined or where $\underline{\underline{x}}(\underset{=}{x}) \in T$. Similarly, let M be the subset of W where either $\underset{\underline{\psi}}{ }$ is not defined or where $\underset{\underline{\psi}}{\underline{\sim}} \underset{=}{ } \in S$. In view of Theorem $3 E$, the sets L, M are proper algebraic subsets of V, W, respectively. Now $\underline{\underline{L}}$ is defined on $V \sim L$. Clearly, if $\underset{\underline{x}}{\underline{x}} \mathrm{~V} \sim \mathrm{~L}$, then $\underline{\underline{\varphi}}(\underline{x}) \notin \mathrm{T}$. So $\underset{\underline{\psi}}{\underline{\varphi}}(\underline{\underline{x}})$) is defined; but
 $\underset{=}{x} \notin S$. So the restriction of φ to $V-L$ maps $V-L$ into $W-M$. The restriction of Ψ to $W \sim M$ maps $W \sim M$ into $V \sim L$. These maps are inverses of each other.

THEOREM 4B. Let V and W be varieties. Then $V \cong W$ if and only if their function fields are k-isomorphic.

Proof: If $\underset{=}{x}$ is a generic point of V and $\underline{\underline{y}}$ is a generic point of W, then the function fields are isomorphic to $k(\underset{=}{x}$) and $k(y)$, respectively. So we need to show that $V \cong W$ if and only if $\mathrm{k}(\underset{\underline{x}}{ })$ is isomorphic to $\mathrm{k}(\mathrm{y})$.

Suppose that $V \cong W$. Let $\underline{\underline{V}}: V \rightarrow W$ and $\Psi: W \rightarrow V$ be birrational maps, such that $\underline{\underline{\Psi}} \underset{\underline{~}}{ }$ and $\underset{\underline{\Psi}}{\underline{\varphi}}$ are the identity maps on W and V, respectively.

It is clear from Theorem 4A that the "image" of V under $\underline{=}$ is W . Thus if $\underset{=}{x}$ is a generic point of V, then by Theorem 3D the point $\underset{\underline{y}}{\underline{y}} \underline{\underline{\varphi}}(\underset{\sim}{x}$) is a generic point of W. We have $\underline{\underline{y}}=\underline{\underline{\varphi}}(\underline{x})$ and $\underset{=}{x}=\underline{\underline{\Psi}}(\underline{\underline{y}})$, whence $k(\underline{\underline{y}}) \subseteq k(\underline{\underline{y}})$ and $k(\underline{\underline{x}}) \subseteq k(\underline{\underline{y}})$, whence $k(\underset{\underline{x}}{ })=k(\underline{\underline{y}})$. Thus the function fields are certainly k-isomorphic.

Conversely, let $k(\underset{=}{x})$ be isomorphic to $k(\underset{\underline{y}}{y})$, where $\underset{=}{x}=\left(x_{1} \ldots, x_{n}\right), \underline{\underline{y}}=\left(y_{1} \ldots, y_{m}\right)$
are generic points of V, W respectively. Let α be a k-isomorphism from $k(\underset{\sim}{x})$ to $k(\underline{y})$. Let $\alpha\left(x_{i}\right)=x_{i}^{\prime} \quad(i=1, \ldots, n)$ and put
 of V. Thus we may suppose that $k(\underset{=}{x})=k(\underline{\underline{y}})$. Suppose that
and

$$
\begin{array}{ll}
y_{i}=r_{i} \stackrel{(x)}{=} & (i=1, \ldots, m) \\
x_{j}=s_{j} \stackrel{(y)}{=} & (j=1, \ldots, n)
\end{array}
$$

for certain rational functions r_{1}, \ldots, r_{m} and s_{1}, \ldots, s_{n}. Then و: $\quad V \rightarrow W$ represented by $\left(r_{1}(X), \ldots, r_{m}(\underset{=}{X})\right)$ and $\underset{=}{\psi}: W \rightarrow V$ represented by $\left(s_{1}(\underset{=}{Y}), \ldots, s_{n}(\underline{Y})\right)$ are rational maps which are inverses of each other.

In 83 we defined a rational curve as one whose function field is isomorphic to $k(X)$. In view of Theorem $4 B$, we may also define a rational curve as a curve which is birationally equivalent to Ω^{1}.

LEMMA 4C. The following two conditions on a field k are equivalent.
(i). Either char $k=0$, or char $k=p>0$ and for every $a \in k$ there is a $b \in k$ with $b^{p}=a$.
(ii), Every algebraic extension of k is separable.

Proof. We clearly may suppose that char $k=p>0$.
(i) \rightarrow (ii). A polynomial of $k[x]$ of the type

$$
\begin{equation*}
a_{0}+a_{1} x^{p}+\cdots+a_{t} x^{t p} \tag{4.4}
\end{equation*}
$$

equals $\left(b_{0}+b_{1} X+\ldots+b_{t} X^{t}\right)^{p}$ where $b_{i}^{p}=a_{i}(i=0, \ldots, t)$. Thus an irreducible polynomial over k is not of the type (4.4), hence is separable.
(ii) \rightarrow (i). Suppose there is an $a \in k$ not of the type $a=b^{p}$ with $b \in k$. Then there is a b which is not in k but in an algebraic extension of k, with $a=b^{p}$. Since p is a prime, it is easily seen that $i=p$ is the smallest positive exponent with $b^{i} \in k$. The polynomial $X^{p}-a=(X-b)^{p}$ has proper factors $(X-b)^{i}$ with $1 \leqq i \leqq p-1$, but none of these factors lies in $k[x]$ since $b^{i} \not \ddagger k$. Thus $x^{p}-a$ is irreducible over k, and b is inseparable over k .

A field with the properties of the lemma is called perfect. A Galois field is perfect. For if a lies in the finite field F_{q} with $q=p^{v}$ elements, then $a=a^{q}=\left(a^{\nu-1}\right)^{p}$.

THEOREM 4D. Suppose V is a variety defined over a perfect ground field k. Then V is birationally equivalent to a hypersurface.

Proof. Suppose $\operatorname{dim} V=d$ and $\underset{=}{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a generic point of V. Then $n \geqq d$. In view of Theorem $4 B$ it will suffice to show that there is a $\underline{y}=\left(y_{1}, \ldots, y_{d+1}\right)$ with

$$
\begin{equation*}
k(\underset{=}{x})=k(\underline{y}) \tag{4.5}
\end{equation*}
$$

We shall show this by induction on $n-d$. If $n-d=0$, set $y_{1}=x_{1}, \ldots, y_{d}=x_{d}, y_{d+1}=0$. If $n-d=1$, set $\underset{\underline{y}}{\underline{x}}=\underline{x}$. Suppose now that $n-d>1$ and that our claim is true for smaller values of $\mathrm{n}-\mathrm{d}$. We may suppose without loss of generality that $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}+1}$ have transcendence degree d over k. Then $\left(x_{1}, \ldots, x_{d+1}\right)$ is the generic point of a hypersurface in Ω^{d+1}. This hypersurface is defined by an equation $f\left(z_{1}, \ldots, z_{d+1}\right)=0$ where $f\left(z_{1}, \ldots, z_{d+1}\right)$ is irreducible over k. Since k is perfect, it is clear that f is not a polynomial in $Z_{1}^{p}, \ldots, Z_{d+1}^{p}$ if char $k=p>0$. We may then suppose without loss of generality that f is not a polynomial in $Z_{1}, \ldots, z_{d}, z_{d+1}^{p}$. Thus f is separable in the variable Z_{d+1}, and X_{d+1} is separable algebraic over $k\left(x_{1}, \ldots, x_{d}\right)$. By the theorem of the primitive element (see Van der Waerden, §43), there is an x^{\prime} with

$$
k\left(x_{1}, \ldots, x_{d}, x_{d+1}, x_{d+2}\right)=k\left(x_{1}, \ldots, x_{d}, x^{\prime}\right) .
$$

Thus ${\underset{\sim}{x}}^{\prime}=\left(x_{1}, \ldots, x_{d}, x^{\prime}, x_{d+3}, \ldots, x_{n}\right)$ has $k\left(\underset{=}{x^{\prime}}\right)=k(\underset{=}{x})$. By induction hypothesis there is a $\underline{\underline{y}} \in \Omega^{d+1}$ with $k\left(\underline{\underline{x}}^{\prime}\right)=k(\underline{\underline{y}})$, hence with (4.5).
5. Linear Disjointness of Fields

LEMMA 5A: Suppose that Ω, K, L, k are fields with $\mathrm{k} \subseteq \mathrm{K} \subseteq \Omega, \quad \mathrm{k} \subseteq \mathrm{L} \subseteq \Omega:$

The following two properties are equivalent:
(i) If elements x_{1}, \ldots, x_{m} of K are linearly independent over k , then they are also linearly independent over L .
(ii) If elements y_{1}, \ldots, y_{n} of L are linearly independent over k, then they are also linearly independent over K.

Proof: By symmetry it is sufficient to show that (i) implies (ii). Let y_{1}, \ldots, y_{n} of L be linearly independent over k. Let x_{1}, \ldots, x_{n} of K be not all zero. We want to show that

$$
\begin{equation*}
x_{1} y_{1}+\cdots+x_{n} y_{n} \neq 0 \tag{5.1}
\end{equation*}
$$

Let d be the maximum number of x_{1}, \ldots, x_{n} which are linearly independent over k. Without loss of generality, we may assume that x_{1}, \ldots, x_{d} are linearly independent over k. Thus for $d<i \leqq n$ we have $x_{i}=\sum_{j=1}^{d} c_{i j} x_{j}$, where $c_{i j} \in k$. We obtain

$$
\begin{aligned}
x_{1} y_{1}+\ldots+x_{n} y_{n}=\left(y_{1}+\right. & \left.\sum_{i=d+1}^{n} c_{i 1} y_{i}\right) x_{1}+\ldots \\
& +\left(y_{d}+\sum_{i=d+1}^{n} c_{i d} y_{i}\right) x_{d}
\end{aligned}
$$

```
Here }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{d}{}\inK\mathrm{ are linearly independent over k , whence linearly
independent over K . Their coefficients are not zero since y y,..,
yn
    We say that field extensions K , L of k are linearly disjoint
over k, if properties (i) and (ii) hold.
    Examples: (i) Consider the fields
```


Here $Q(\sqrt{2})$ and $Q(X)$ are linearly disjoint over Q 。 For if $(\mathrm{a}+\mathrm{b} \sqrt{2})$ and $\mathrm{c}+\mathrm{d} \sqrt{2})$ are linearly independent over \mathbb{Q}, then clearly they are linearly independent over $Q(X)$.
(ii) Let X, Y, Z, W be variables, and consider the fields

In this case $\mathbb{C}(X, Y)$ and $\mathbb{C}(Z, W, X Z+Y W)$ are not linearly disjoint over \mathbb{C}. For $Z, W, X Z+Y W$ are linearly dependent over $\mathbb{C}(X, Y)$, but are linearly independent over \mathbb{C}.

LEMMA 5B：Let us consider fields

where L is the quotient field of a ring R ．For linear disjointness it is sufficient to show that if $z_{1}, \ldots, z_{n} \in R$ are linearly independent over k ，then they are also linearly independent over K 。

Proof：Let $y_{1}, \ldots, y_{n} \in L$ be linearly independent over k 。 We can find a $z \neq 0, \quad z \in R$ ，such that $\quad z y_{1}, \ldots, z y_{n} \in R$ ．Now $z_{1}, \ldots, z y_{n}$ are linearly independent over k ，hence also linearly independent over K ．Therefore y_{1}, \ldots, y_{n} are linearly independent over K ．

LEMMA 5C：Suppose we have fields

where K is algebraic over k ．Let $K L$ be the set of expressions $x_{1} y_{1}+\ldots+x_{n} y_{n}$ with $x_{i} \in K, y_{i} \in L \quad$ for $\quad l \leq i \leq n$ ，and with n arbitrary．
（i）The set $K L$ is a field，it contains K and L ，and is the smallest such field．
（ii）Suppose that $[\mathrm{K}: \mathrm{k}]$ is finite．Then $[\mathrm{KL}: \mathrm{L}] \leqq$ $[\mathrm{K}: \mathrm{k}]$ ，with equality precisely if K, L are linearly disjoint over k 。
(iii) Now suppose that K, L are linearly disjoint over k . Let α be a k-isomorphism from K to a field H containing k Let β be a k-isomorphism from L to H. Then $x_{1} y_{1}+\ldots+x_{n} y_{n} \rightarrow \alpha\left(x_{1}\right) \beta\left(y_{1}\right)+\ldots+\alpha\left(x_{n}\right) \beta\left(y_{n}\right)$ is a well-defined map from KL to H . It is a kisomorphism into H.

Proof: Exercise。

LEMMA 5D. Suppose we have a diagram of fields and subfields

where k is perfect and \bar{k} is the algebraic closure of k. Then $\mathrm{K}, \overline{\mathrm{k}}$ are linearly disjoint over k if and only if k is algebraically closed in K.

Proof: If k is not algebraically closed in K, then there exists a proper algebraic extension k_{1} of k with $k_{1} \subseteq K$;

It is now clear that \bar{k} and K cannot be linearly disjoint over k.

Conversely, suppose that k is algebraically closed in k. It suffices to show that k_{2}, K are linearly disjoint over k, where k_{2} is any finite algebraic extension of k 。 Since k is perfect, $k_{2}=k(x)$, and we have the following diagram of fields:

If $f(X)$ is the defining polynomial of x over k, then it remains irreducible over K, since every proper factor of $f(X)$ has coefficients which are algebraic over k, with some coefficients not in k, and hence not in K.

So for the fields

we have $[K \cdot k(x): K]=[k(x): k]$; hence $k(x), K$ are linearly disjoint over k by Lemma $5 C$.

6. Constant Field Extensions

Consider fields k, k, Ω, such that $k \subseteq k \subseteq \Omega$, and Ω is algebraically closed and has infinite transcendence degree over K. If $\underset{=}{x} \in \Omega^{n}$, then $\tilde{S}_{k}^{\top}(\underset{=}{x})$ is the ideal of all polynomials $\underset{=}{(x)} \in$ $\mathrm{k}[\underline{\mathrm{X}}]$ with $f(\underset{=}{x})=0$. We have seen in §l that $\Im_{\mathrm{k}}(\underset{=}{x})=y$ is a

[^0]prime ideal in $k[\underset{=}{X}]$. Similarly, $\tilde{S}_{K}(X)=P$ is a prime ideal in $K[\underset{=}{X}]$. Let $\mathcal{Z} K[\underset{=}{X}]$ be the ideal in $K[\underset{=}{X}]$ generated by $\underset{y}{ }$. The ideal $y K[\underset{=}{X}]$ consists of all linear combinations $c_{1} f_{1}+\ldots+c_{m} f_{m}$,
 the closure of a point $\underset{=}{x}$ with respect to k, k by $\underset{=}{(\bar{x})}{ }^{k},\left(\underset{\sim}{\bar{x}}{ }^{K}\right.$,

$$
\left(\frac{\bar{x}}{=}\right)^{K} \subseteq\left(\overline{\bar{x}}^{k} .\right.
$$

Example: Let $k=\mathbb{Q}, \quad K=\mathbb{Q}(\sqrt{2}), \Omega=\mathbb{C}$, and $n=2$. Consider the point $(e \sqrt{2}, e)=\underset{=}{x}$. Then $(\bar{x})^{k}$ is the set of zeros of the polynomial $x^{2}-2 Y^{2}$. But $(\bar{x})^{K}$ is the set of zeros of $\mathrm{X}-\sqrt{2} \mathrm{Y}$.

THEOREM 6A. Let $k \subseteq K \subseteq \Omega$ be fields, where Ω is algebraically closed and has infinite transcendence degree over K. Let $x \in \Omega^{n}$, $\Im_{k}(x)=g, S_{K}(x)=\Re$. Consider the following four properties:
(i) The fields $K, k(\underset{=}{x}$ are linearly disjoint extensions of k ,
(ii) $N=y K[\underline{x}]$,
(iii) ${\underset{\underline{x}}{\underline{x}}}^{k}=\left(\underset{\underline{x}}{\underline{x}}{ }^{K}\right.$,
(iv) $B=\sqrt{y K[x]}$.

The properties (i), (ii) are equivalent. Property (ii)
implies property (iii), which in turn implies property (iv).

By the linear disjointness of K and $k(\underset{=}{x})$, the $a_{i}{ }^{\prime} s$ are linearly independent over $k(\underset{\sim}{x})$. It follows that each $f_{i} \underset{=}{(x)}=0$, and each

To show that (ii) implies (i), let $u_{1}(\mathbb{X}), \ldots, u_{\ell}(X)$ be elements of $k[\underset{=}{x}]$, such that $u_{1}(\underset{=}{x}), \ldots, u_{\ell} \stackrel{(x)}{=}$ are linearly independent over k . By Lemma 5 B , it will suffice to show that $u_{1} \stackrel{(x)}{=}, \ldots, u_{\ell} \stackrel{(x)}{=}$ remain linearly independent over K. Suppose $a_{1} u_{1} \underset{(x)}{=}+\ldots+$
 Since $f(\underset{=}{x})=0$, the polynomial $f(\underset{\sim}{X})$ lies in $\pi=g K[\underset{=}{X}]$. We have a relation

$$
\begin{equation*}
a_{1} u_{1} \stackrel{(X)}{=}+\cdots+a_{\ell} u_{\ell}(\underset{=}{X})=b_{1} f_{1}(\underset{=}{X})+\ldots+b_{m} f_{m}(X) \tag{6.1}
\end{equation*}
$$

where $b_{i} \in K, \quad f_{i} \underset{=}{(X)} \in \mathscr{y} \quad(i=1, \ldots, m)$, We may assume that f_{1}, \ldots, f_{m} are linearly independent over k. We claim that $u_{1}(X), \ldots, u_{\ell}(\underset{=}{X}), f_{1}(X), \ldots, f_{m}(X)$ are linearly independent over k. Suppose that

$$
\begin{equation*}
\sum_{i=1}^{l} c_{i} u_{i} \stackrel{(x)}{=}+\sum_{j=1}^{m} d_{j} f_{j}(\underset{=}{=})=0, \tag{6.2}
\end{equation*}
$$

where $c_{i}, d_{j} \in k$. Substituting $\underset{=}{x}$ for $\underset{=}{X}$, we obtain
$\sum_{i=1}^{\ell} c_{i} u_{i} \stackrel{(x)}{=}=0$. However, the $u_{i} \stackrel{(x)}{=}$ are linearly independent over k , so that $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\ell}$ are all zero. Thus (6.2) reduces to $\sum_{j=1}^{m} d_{j}{ }_{j}(\underset{=}{x})=0$. But the $f_{j}(\underset{=}{(X)}$ are linearly independent over k, and hence $d_{1}=\ldots=d_{m}=0$. We have established the linear independence of $u_{1}\left(\underset{=}{(x)}, \ldots, u_{\ell}\left(\underset{=}{(X)}, f_{1}(X), \ldots, f_{m}(X)\right.\right.$ over k. These Q. $+m$ polynomials have coefficients in k and are linearly independent over k, and hence they are also linearly independent over
K^{\dagger}. Hence in (6.1), all the coefficients are zero, and in particular $a_{1}=\cdots=a_{\ell}=0$.

We next want to show that (ii) implies (iii). Let $\underset{\underline{y} \in(\underset{\sim}{x})}{ }{ }^{k}$.

 and since the reversed relation is always true, we obtain (iii).

Finally, we are going to show that (iii) implies (iv). Suppose $f(\underset{=}{x}) \in T$. Then f vanishes on $\underset{(x)}{(x)} \underset{\underline{(x)}}{\underline{x}}$, and $f \in \mathcal{S}_{K} \underset{=}{(x)}=$
 we have $\underset{y}{ } K[\underset{=}{X}] \subseteq \mathcal{F}$, whence $\sqrt{\mathcal{y} K[\underset{=}{X}]} \subseteq \sqrt{M}=B$.
 Thus (iii) does not imply (ii). Let k_{0} be a field of characteristic p, and let $k=k_{0}(z)$, where z is transcendental over k_{0}. Put $\underset{=}{x}=$ $(t, t \sqrt[p]{z})$, where t is transcendental over k. Then $y=\mathfrak{J}_{k}(x)=$ $\left(z X_{1}^{p}-X_{2}^{p}\right)$, since $z X_{1}^{p}-X_{2}^{p}$ is an irreducible polynomial over k. Now take $K=k(\sqrt[p]{z})$. Then $\Re=\mathcal{S}_{K}(x)=\left(\sqrt[p]{Z} X_{1}-X_{2}\right)$, and $\eta \neq$
 We observe that $(\bar{x})^{k}=(\bar{x}){ }^{k}$, since if $(u, v) \in A\left(\left(z X_{1}^{p}-X_{2}^{p}\right)\right)$, then $z^{p}-v^{p}=(\sqrt[p]{z} u-v)^{p}=0$, so that $\left.\quad(u, v) \in A\left(\sqrt[p]{z} X_{1}-x_{2}\right)\right)$.

THEOREM 6B. Let $k, K, \underset{=}{x}, \notin, ~ \Re$ be as in Theorem 6A. Suppose, moreover, that K is a separable algebraic extension of k. Then $\sqrt{y K[\underline{X}]}=y K[\underline{X}]$.

[^1]Proof: Let $f \in \sqrt{\mathcal{Y} K[\underset{=}{X}]}$. There is a field K_{0} with $k \subseteq K_{0} \subseteq K$ which is finitely generated over k, such that $f \in K_{0}[X]$ and $f \in \sqrt{y^{K}[\underline{x}]}$. Let $f=\sum_{i=1}^{n} c_{i} f_{i}$, where $f_{i}(\underset{=}{x}) \in k[\underline{X}], c_{i} \in K_{0}$, and c_{1}, \ldots, c_{n} are linearly independent over k. In fact, by allowing some f_{i} to be zero, we may suppose that c_{1}, \ldots, c_{n} are a basis for K_{0} over k , where $\mathrm{n}=\left[\mathrm{K}_{0}: \mathrm{k}\right]$ 。 There are n distinct k isomorphisms σ of K_{0} into Ω; write c^{σ} for the image of c under σ. We put

$$
f^{\sigma}(X)=\sum_{i=1}^{n} c_{i}{ }^{\sigma} f_{i}(X)
$$

Here the $(n \times n)$-determinant $\left|c_{i}^{\sigma}\right|$ is not zero, and hence there are $d_{i}^{(\zeta)}$ such that

$$
f_{i} \stackrel{(X)}{=}=\sum_{\sigma} d_{i}^{(\sigma)} f^{\sigma}(\underset{=}{=}) \quad(i=1, \ldots, n)
$$

Now for some $m, f^{m} \in y_{j} K_{0}[\underline{x}]$, whence $\left(f^{\sigma}\right)^{m} \in \mathcal{y}_{j} K_{0}^{\sigma}[x]$, whence $\left(f^{\sigma}\right)^{m}\left(\underset{\underline{x}}{=}=0\right.$, and therefore $f^{\sigma}(\underline{x})=0$ for each σ. Thus each $f_{i}(\underset{=}{x})=0$, and $f_{i} \in g$. We have shown that $f \in g_{0}[\underset{\sim}{x}] \subseteq g K[X]$.

It follows from Fheorems 6A, 6B, that the four properties listed in Theorem 6A are equivalent if K is a separable algebraic extension of k. Now if k is perfect, then every algebraic extension K of k is separable. Thus we obtain

COROLLARY 6C. If k is perfect and if V is a variety over k with generic point $\underset{=}{x}$, then V is an absolute variety if and only
$\underset{\sim}{\text { if }} \mathrm{k}(\mathrm{x}) \quad$ and k are linearly disjoint over $\frac{\mathrm{k}}{\mathrm{m}}$. This is the case if and only if k is algebraically closed in $\mathrm{k}(\underset{=}{\mathrm{x}})$.*)

THEOREM 6D. Let k be a perfect ground field.
(i) If $f(\underset{=}{X}) \in k[\underset{=}{X}]$ is not constant and is absolutely irreducible, then the set of zeros of f is an absolute hypersurface.
(ii) If S is an absolute hypersurface, then $\Im_{k}(S)=(f)_{k}^{\dagger}$, where f is absolutely irreducible and nonconstant.

Proof: (i) This follows directly from Theorem 2C, and the fact that f is absolutely irreducible.
(ii) From Theorem 2C it follows that $\mathscr{S}_{k}(S)=(f)_{k}$, where f is nonconstant and irreducible over k. Let K be an algebraic
 the principal ideal generated by f in $K[\underset{\underline{X}}{X}]$ is a prime ideal, and f is irreducible over K.

REMARKS (1). Let k be perfect and let V be a variety over k. In Theorem $4 D$ we constructed a hypersurface S which was birationally equivalent to V. In fact, the construction was such that $\mathrm{k}(\underset{\underline{x}}{\underline{x}})=\mathrm{k}(\underline{\underline{y}})$, where $\underset{\underline{x}}{\underline{y}} \underline{\underline{y}}$ were certain generic points of V, S, respectively. Now if V is an absolute variety, then k is algebraically

[^2]closed in $k(\underset{\underline{x}}{ })=k(\underline{\underline{y}})$, and S is also an absolute variety.
(2) Another approach to Corollary 6C is this: It may be shown directly that if two k-varieties are k-birationally equivalent, and if one is absolute, then so is the other. Thus the proof may be reduced to the case of a hypersurface. But this case is essentially Theorem 3A of Ch. V.

7. Counting Points in Varieties Over Finite Fields

The goal of this section is a proof of

THEOREM 7A. Let V be an absolute variety of dimension d defined over $k=F_{q}$. Let $N_{V}=N_{V}(V)$ be the number of points $\underline{\underline{y}}=\left(y_{1}, \ldots, y_{n}\right)$ in V with each coordinate in $F_{q} \nu$. Then as $\nu \rightarrow \infty$, (7.1) $\quad N_{\nu}=q^{\nu d}+O\left(q^{\nu(d-1 / 2)}\right)$.

The proof will depend on a result we derived in Chapter V. Namely, if $f\left(X_{1}, \ldots, X_{n}\right) \in F_{q}\left[X_{1}, \ldots, X_{n}\right]$ is nonconstant and absolutely irreducible and if N is the number of zeros of f in F_{q}, then

$$
\begin{equation*}
\left|N-q^{n-1}\right| \leq c_{q}^{n-3 / 2} \tag{7.2}
\end{equation*}
$$

where c is a constant which depends on n and the total degree of f. For $n=2$, this result is Theorem la of Chapter III, and for general n it is Theorem 5A of Chapter V. Only the case $n=2$ is needed if V is a curve。

LEMMA 7B: Theorem 7A is true for hypersurfaces.

Proof: Let S be an absolute hypersurface of dimension d. By Theorem 6D, S is given by $f(\underset{=}{x})=0$, where $f(\underset{=}{X})$ is not constant and is absolutely irreducible。 Thus by (7.2),

$$
\left|N-q^{d}\right|=\left|N-q^{n-1}\right| \leq c q^{n-(3 / 2)}=c q^{d-1 / 2} .
$$

Now applying this result to $F_{q} \nu$ instead of F_{q}, we see that $\left|N_{\nu}-q^{\nu d}\right| \leq \mathrm{cq}^{\nu(\mathrm{d}-1 / 2)}$.

Theorem 7A for the general variety is done by induction on d. If $d=0$ and $V=(\underset{=}{(\bar{x}})$, then every $z \in F_{q}(\underset{=}{(x)}$ is algebraic over F_{q}, and so satisfies an equation $1 \cdot \mathrm{z}-\alpha \cdot 1=0$ where $\alpha \in \overline{\mathrm{F}}_{\mathrm{q}}$. Thus z, l are linearly dependent over \bar{F}_{q}. Since $F_{q}(x)$ and \bar{F}_{q} are linearly disjoint over F_{q}, it follows that z, l are linearly dependent over F_{q}. So $z \in F_{q}$, and $F_{q} \underset{=}{(x)}=F_{q}$. Thus $\underset{=}{x}$ has coordinates in F_{q}, and $V=(\underset{=}{\bar{x}})=\underset{=}{x}$. It follows that $N_{v}=1$ for every ν 。

In order to do the induction step from $d-1$ to d, we shall need

LEMMA 7C. Suppose Theorem 7A is true for absolute varieties of dimension $<d$. Let W be a variety of dimension $<d$, not necessarily an absolute variety. Then as $\nu \rightarrow \infty$,

$$
N_{\nu}(W)=0\left(q^{\nu(d-1)}\right) .
$$

Proof: It is clear that W is still an algebraic set over $K=\bar{F}_{q}$, but not necessarily a K-variety. So W is a finite union $W=W_{1} U \ldots U W_{t}$, where the W_{i} are K-varieties. Each W_{i} is
defined by finitely many equations. The coefficients of all these equations for W_{1}, \ldots, W_{t} generate a finite extension F_{q} of F_{q}. So each W_{i} is a $F_{q^{h}}$-variety and is as such an absolute variety, and $d_{i}=\operatorname{dim} W_{i} \leq d-1$. Let $N_{\lambda_{\psi}}\left(W_{i}\right)$ be the number of points in W_{i} with coordinates in $F_{q \lambda \mu}$. By our induction hypothesis, applied to F_{q} instead of F_{q}, we see that as the integer λ tends to ∞, we have

$$
\left.\begin{array}{rl}
N_{\lambda \mu}\left(W_{i}\right) & =q^{\lambda_{\mu}\left(d_{i}-1\right)}+O\left(q^{\lambda_{\mu}\left(d_{i}\right.}-3 / 2\right)
\end{array}\right)
$$

Thus $N_{\lambda_{\mu}}(W)=O\left(q^{\lambda_{\mu}(d-1)}\right)$ as $\lambda \rightarrow \infty$ 。Given ν, pick an integer λ with $(\lambda-1) \mu<\nu \leq \lambda \mu$. Then as $\nu \rightarrow \infty$,

$$
\begin{aligned}
N_{\nu}(W) & \leq N_{\lambda \mu}(W)=o\left(q^{\lambda \mu(d-1)}\right) \\
& =o\left(q^{\nu(d-1)+\mu(d-1)}\right) \\
& =o\left(q^{\nu(d-1)}\right)
\end{aligned}
$$

The proof of Theorem 7A is now completed as follows. According to Theorem 4D, the variety V is birationally equivalent to a hypersurface S, and this hypersurface is an absolute variety by the remark at the end of $\$ 6$. By Theorem 4A, there exist proper algebraic subsets $L \subseteq V, M \subseteq S$, such that the birational correspondence $\stackrel{(0)}{=}$ between V and S becomes a 1 - 1 correspondence between points of $V \sim L$ and of $S \sim M$. Now \triangleq as well as its inverse is defined over $k=F_{q}$, i.e. is defined in terms of rational functions with coefficients in F_{q}. Thus in this correspondence, points with components in F_{q} correspond to points with components in F_{q}.

More generally, points with components in $\mathrm{F}_{\mathrm{q}} \nu$ correspond to points with components in $\mathrm{F}_{\mathrm{q}} \nu$. Hence

$$
\begin{equation*}
\left|N_{V}(V)-N_{V}(S)\right| \leq N_{V}(L)+N_{V}(M) \tag{7.3}
\end{equation*}
$$

However, L and M are composed of varieties of dimension $<d$. So by Lemma $7 C, \quad N_{V}(L)+N_{V}(M)=0\left(q^{\nu(d-1)}\right)$ 。On the other hand, by Lemma $7 B, N_{\nu}(S)=q^{\nu d}+O\left(q^{\nu(d-1 / 2)}\right)$. These relations in conjunction with (7.3) yield (7.1).

REMARKS. (i) Theorem 7A together with Theorem 2D shows that the number N_{ν} of solutions $\left(x, y_{1}, \ldots, y_{t}\right) \in F_{q}{ }^{t+1}$ of certain systems of equations

$$
y_{1}^{d_{1}}=g_{1}(x), \quad y_{2}^{d_{2}}=g_{2}\left(x, y_{1}\right), \ldots, \quad y_{t}^{d_{t}}=g_{t}\left(x, y_{1}, \ldots, y_{t}\right)
$$

satisfies $N_{v}=q^{\nu}+O\left(q^{\nu / 2}\right)$ as $\nu \rightarrow \infty$. In particular this holds for certain systems of equations

$$
y_{1}^{d_{1}}=g_{1}(x), \ldots, y_{t}^{d_{t}}=g_{t}(x)
$$

But a better result for such systems was already derived in Theorem 5A of Chapter II. Under suitable conditions on $g_{1}(X), \ldots, g_{t}(X)$ it was shown that $\left|N_{V}-q^{\nu}\right| \leq q^{\nu / 2}$, where c was a constant explicitly determined in terms of t and the degrees of the polynomials $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{t}}$.
(ii) More generally, if V is an absolute variety defined over F_{q} determined by equations $f_{1} \underset{\underline{x}}{(\mathrm{x})}=\ldots=\mathrm{f}_{\ell}(\underset{\underline{x}}{(x)}=0$, then our Theorem 7A could be strengthened to

$$
\left|N_{\nu}-q^{\nu d}\right| \leqq c q^{\nu(d-1 / 2)}
$$

where c is a constant depending only on the number n of variables, on ℓ, and on the total degrees of the polynomials f_{1}, \ldots, f_{t}.
(iii) Corollary 2 B of Chapter V can be generalized as follows. Suppose V is an absolute variety of dimension d over \mathbb{Q} defined by equations $f_{1}(\underset{=}{x})=\ldots=f_{\ell}(\underset{=}{x})=0$, where $f_{1}(\underset{=}{X}), \ldots, f_{\ell}(\underset{=}{X})$ have rational integer coefficients. Let $\bar{f}_{i}\left(\underset{=}{(X)}\right.$ be obtained from $f_{i}(\underset{=}{(X)}$ by reduction modulo p and let V_{p} be the algebraic set defined over F_{p} by $\overline{f_{l}}(\underset{=}{x})=\ldots=\bar{f}_{\ell} \underset{=}{(x)}=0$. Then if $p>p_{o}$, the set V_{p} is an $\underline{\text { absolute }}$ variety of dimension d. Here p_{0} depends only on n, ℓ and the degrees of the polynomials $f_{1}, \ldots f_{\ell}$. Hence if $p>p_{o}$, then the number $N(p)$ of solutions of the system of congruences

$$
f_{1}(\underset{=}{x}) \equiv \ldots \equiv f_{l}(x) \equiv 0(\bmod p)
$$

satisfies $\left|N(p)-p^{d}\right| \leqq c p^{d-1 / 2}$.
(iv) The Weil (1949) conjectures (see also Ch. IV, §6) imply much better estimates than Theorem 7A if V is a "non-singular" variety of dimension $d>1$. These conjectures were recently proved by Deligne

[^3]
[^0]: \dagger Given a subset $M \subseteq \Omega^{n}$, we write $\Im_{k}(M)$ or $\Im_{K}(M)$ for the set of polynomials $f(\underset{s}{ })$ in $k[x]$ or $K[x]$, respectively, which vanish
 on M.

[^1]: Linearly independent vectors in a vector space $k t$ over $k \quad r e m a i n$ linearly independent in the vector space K^{t}, where K is an overfield of k 。

[^2]: $\dagger_{\text {We write }}$ (f) k resp. (f) k for the principal ideal generated by f in $k[\underset{=}{x}]$ and in $k[\underline{x}]$.
 *) Compare with Theorem 3A of Ch. V.

[^3]: ${ }^{+)}$But see the remark in the Preface.

