
VI. Rudiments of Algebraic Geometry. T.he Number of 

Points in Varieties over Finite Fields. 

G e n e r a l  R e f e r e n c e s :  A r t i n  ( 1 9 5 5 ) ,  Lang (1958) ,  S h a f a r e v i c h  (19~7~), 

Mumford ( ) 

w Varieties. 

THEOREM IA. Let k be a field. Let Xl,... X be variables. 
' n 

(i) In the ring k[Xl,X2,...,Xn] j every ideal has a finite basis. 

(ii) In this ring the ascending chain condition holds,i.e., if 

~I 1 c_ ~I 2 _c ... is an ascending sequence of ideals, then for some 

' ~m m+l 
m 

(iii) Every non-empty set of ideals in this ring which is partially 

ordered by set inclusion, has at least one maximal element. 

Statement (i) is the Hilbert Basis Theorem (Hilbert 1888). It is 

well known that the three conditions (i), (ii), (iii) for a ring R 

are equivalent. A ring satisfying these conditions is called Noetherian. 

A proof of this Theorem may be found in books on algebra, e.g. Van 

der Waerden (1955), Kap. 12 or Zariski-Samuel (1958), Ch. IV, and will 

not be given here. 

If k , K are fields such that k ~ K , the transcendence degree 

of K over k , written tr. deg. K/k , is the maximum number of elements 

in K which are algebraically independent over k . 

In what follows, k , ~ will be fields such that k ~ ~ , the 

tr. deg ~/k = ~ , and Q is algebraically closed. We call k the 

ground field, and ~ the universal domain. For example, we may take 
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k = Q ( t h e  r a t i o n a l s ) ,  Q = C ( t h e  c o m p l e x  n u m b e r s ) .  O r  k = F , t h e  
q 

f i n i t e  f i e l d  o f  a q e l e m e n t s ,  Q = F q ( X 1 , X 2 , . . . )  , i . e .  t h e  a l g e b r a i c  

c l o s u r e  o f  F ( X I , X 2 , . . . )  q 

C o n s i d e r  ~ n  , t h e  s p a c e  o f  n -  t u p l e s  o f  e l e m e n t s  i n  Q . S u p p o s e  

is an ideal in k[Xl,...,Xn] = k[X] . Let A~) be the set of 

x = (Xl,...,Xn) 6Qnhaving f(x) =0 for every f(X) 6 ~ . Every set 

A(~) so obtained is called an algebraic set. More precisely, it is a 

k- algebraic set. If we have such an ideal ~ , then by Theorem IA , 

there exists a basis of ~ consisting of a finite number of poly- 

n o m i a l s  s a y  f l ( X )  . . . , f  ( X ) .  T h e r e f o r e  A ( ~ )  c a n  a l s o  b e  c h a r a c t e r i z e d  
' ~ ' m 

as the set of x E ~n with fl(x) ..... f (x) = 0 . No~e that if 
= = m = 

C 
:Jl- ~2 ' then A~I) _D A~2) " 

E x a m p l e s :  ( 1 )  L e t  k = ~ , Q = C , n = 2 , a n d  ~ t h e  i d e a l  

2 2 
g e n e r a t e d  b y  f ( X 1 , X  2 )  = X 1 + X 2 - 1 . T h e n  A 6 )  i s  t h e  u n i t  c i r c l e .  

(2 )  A g a i n  l e t  k = @ , Q = C , n = 2 , a n d  t a k e  ~ t o  b e  t h e  

2 2 
i d e a l  g e n e r a t e d  b y  f ( X 1 , X  2 )  = X 1 - X 2 . T h e n  A ~ )  c o n s i s t s  o f  t h e  

t w o  i n t e r s e c t i n g  l i n e s  x 2 = x 1 , x 2 = - x 1 . 

THEOREM l B .  ( i )  T h e  e m p t y  s e t  r a n d  Q n  a r e  a l g e b r a i c  s e t s .  

(ii) A finite union of algebraic sets is an algebraic set. 

(iii) An intersection of an arbitrary number of algebraic sets is 

a n  a l g e b r a i c  s e t .  

P r o o f :  ( i )  I f  ~ = k [ X 1 , . . . , X n ]  , t h e n  A ( ~ ) =  r . I f  ~ = ( 0 ) ,  L @ ,  

t h e  p r i n c i p a l  i d e a l  g e n e r a t e d  b y  t h e  z e r o  p o l y n o m i a l ,  t h e n  A ( ~ )  = Q n  . 

(ii) It is sufficient to show that the union of two algebraic sets 

is again an algebraic set. Suppose A is the algebraic set given by 
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the equations fl(x=) ..... f~(x) = 0 , B is the algebraic set given 

by the equations gl(=X) . . . . .  gin(x) = 0 . Then A U B is the set 

of x E Qn with fi(x) g1(x) = fl(x=) g2(x) . . . . .  fs gin(x) = 0 . 

(iii) Let A , ~ E I , where I is any indexing set, be a 

collection of algebraic sets. Suppose that A = A(~) , where ~ 

is an ideal in k[X]. We claim that 

(i.i) 
cr E I (~ I 

where ~ ~- is the ideal consisting of sums fl(X) + ... + f~(X) ~5~ = __ 

with each fi(X) in ~(~ for some ~ E I . To prove (I.I) , suppose 

that x E ~ A(~ ). Then for each ~ E I , = x E A~) , whence 

f(x) = 0 if f E ~5~ ~- �9 Therefore f(x)= = 0 if f E ~ .~~ . Hence 

x E A( ~ ~I " Conversely, if =x E A( ~ ~) , then f(x=) = 0 if 

~ E I  o~EI 

~" then f(x) = 0 �9 Thus, f E , ~c~e' . So for any (Y E I , if f E ~5(~ , = 

x E A(~ ) for all ~ , or x ~ ~ A~) This proves (i.i) . It 

follows that NA G = nA~(~) is an algebraic set. 

In Qn we can now introduce a topology by defining the closed sets 

as the algebraic sets. This topology is called the Zariski Topology. 

As usual, the closure of a set M is the intersection of the closed 

sets containing M . It is the smallest closed set containing M and 

is denoted by M . 

Let M be a subset of Qn . We write ~(M) for the ideal of all 

p o l y n o m i a l s  f ( X )  w h i c h  v a n i s h  on  M, i . e . ,  a l l  p o l y n o m i a l s  f ( X )  
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s u c h  t h a t  f ( x )  = 0 f o r  e v e r y  x 6 M . 

t h e n  ~ ( M 1 )  _D_ q(M2 ) . 

THEOREM 1C.  M = A ~ ( M ) ) ,  

It is clear that if M 1 C ~ , 

Proof: Clearly A(~(M)) is a closed set containing M . Therefore 

it is sufficient to show that A(~(M)) is the smallest closed set 

containing M . Let T be a closed set containing M ; say T = A ~) . 

Since T 2 M , it follows that 8 G ~(T) ~ ~(M) , so that 

T = A(8) ~ A~(M)) 

Remark: If S is an algebraic set, then it follows from 

Theorem iC that S = A~(S)). 

If ~ is an ideal, define the radical of ~ , written ~ , to 

consist of all f(X) such that for some positive integer m , fm(x) 6 91 . 
= = 

The radical of ~ is again an ideal. For if f(X), g(X) 6 v~ , then 
= = 

there exist positive integer m,~ such that fm(x), g~(X) E ~ �9 Thus 

by the Binomial Theorem~ (f(~) ~ g(~))m+~ E ~ , so that f(~) ~ g(~) E ~ �9 

Also, for any h(X) in k[X] , (h(X) f(X)) m E ~ , so that h(X) f(X) E~ �9 

If ~ is a prime ideal, then ~ = ~ , since if f(X) ~ , 
= 

then fm(x) E D , which implieg that f(X) E ~ �9 
: = 

THEOREM 1D. L e t  ~ b e  a n  i d e a l  i n  k [ X ]  . T h e n  

Example: Let k = Q , ~ = C , n = 2 , and ~ the principal ideal 

generated by f(XI,X 2) = (X21 + X~ - l) 3 Then A~/) is the unit circle, 

l> T h u s  + a n d  ~ ( A O d ) )  = (X~ + X 2 . = 

Before proving Theorem ID we need two lemmas, 

n 

LZ~A 1E. Given a prime ideal ~ % k [ X ]  , there exists an x ~: with 
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P r o o f .  Form t h e  n a t u r a l  h o m o m o r p h i s m  f rom k [X]  t o  t h e  

q u o t i e n t  rL~ k [ X ] / ~ .  S i n c e  ~ ~ k = CO} , t h e  n a t u r a l  h o m o m o r p h i s m  

i s  a n  i s o m o r p h i s m  o n  k . T h u s  we  m a y  c o n s i d e r  k [ 5 ] / V  a s  a n  e x t e n s i o n  

o f  k , and t h e  n a t u r a l  h o m o m o r p h i s m  r e s t r i c t e d  t o  k b e c o m e s  t h e  

i d e n t i t y  map.  Thus  o u r  homomorph i sm i s  a k -  h o m o m o r p h i s m .  Le t  t h e  

image of X i be ~i(i =l,...,n). The natural homomorphism is then 

homomorphism from k[X1,...,.Xn] onto k[~l,...,~n] with kernel ~ . 

Since ~ was a prime ideal, k[~l,...,~n] is an integral domain. 

Try to replace ~i by x.1 E ~ . If, say, ~i,...,~ d are 

algebraically independent over k with ~d+l,...,~ n algebraically 

dependent on them, choose Xl,...,x d E ~ algebraically independent 

over k . Then k(~l,...,~d) is k-isomorphic to k(Xl,...,Xd) 

Also, ~d+l is algebraic over k(~l,...,~d) , and so satisfies a certain 

irreducible equation with coefficients in k(~l,...,~d). Choose Xd+ 1 

in ~ such that it satisfies the corresponding equation as ~d+l but 

with coefficients in k(Xl,...,Xd). Then k~l,...,~d+l ) is k-isomorphic 

to k(Xl,...,Xd+l). There is a k-isomorphism with ~i ~ xi (i = l,...,d+l) . 

Continuing in this manner, we can find Xl,...,x n E ~ such that 

k(~l,...,~ n) is k-isomorphic to k(Xl,...,Xn). There is an isomorphism 

with ~(~i ) = x i (i = l,...,n). 

Composing the natural homomorphism with the isomorphism ~ we 

obtain a homomorphism 

~: k [ X l , ~ . . , x  n]  ~ k [ ~  1 . . . . .  x n]  

with kernel ~ . Write ~ = (Xl,...,Xn) . 

Now ~(x) = ~ , for f(x)= 0 precisely if ~(f(X))= 0 , which 

is true if f(X) E ~ �9 

LEMMA IF. Let ~ be a non-empty subset of k[X] which is closed 

under multiplication and doesn't contain zero. Let ~ be an ideal 
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which is maximal with respect to the property that ~ ~ ~ = r Then 

is a prime ideal. 

P r o o f :  S u p p o s e  f (X) g(X) E ~. b u t  t h a t  f (X) and g(X) a r e  

n o t  i n  ~ . Le t  9..[ = ~ , f ( X ) )  "~, s o  t h a t  ~ p r o p e r l y  c o n t a i n s  ~ . 

S i n c e  ~) i s  m a x i m a l  w i t h  r e s p e c t  t o  t h e  p r o p e r t y  t h a t  ~ ~ ~ = r , 

i t  f o l l o w s  t h a t  ~ ~ ~ ;~ r . So t h e r e  e x i s t s  a c (X)  = p(X) + h(X) f ( X ) ,  

where c(X) E ~ , p(X) E ~) , h(X) E k[X]_ . Similarly, there exists a 

I p t  h t , p l  , h t _ . c (X) = (X) + (X) g(X) , w h e r e  c ' ( X )  E ~ (X) E ~) (x) E k [ X ]  

Then 

! h ! ~ c (X) c (X)  = ( p ' ( X )  + (X) g ( X ) )  (p(X) + h(X) f ( X ) )  6 ~ 

However, since ~ is closed under multiplication, 

contradicting the hypothesis that ~ N ~ = r 

! 
c (x) c(X=) E~: , 

Proof of Theorem ID: Suppose f E ~ , so that there exists a 

positive integer m with fm E ~ �9 Thus for every x E A~I) , 

fro(x) = 0 . Hence f(x) = 0 for every x E Ar . Therefore 

f(X) E ~(A(~I)) , and d ~ - ~  ~(A~!)) 

Suppose f ~ ~ �9 If ~ is the set of all positive integer 

powers of f , then ~ (~ ~ = r ; also ~ does not contain zero. Let 

t 
be an ideal containing ~ which is maximal with respect to the property 

that ~ n ~=~ �9 By Lemma 1F, ~ is a prime ideal. By Lemma 1E, there 

exists a point x E ~n such that ~ = ~(x) Since f r ~ , f(x) ~ 0 ~ 

Also, (~) = A(~(x)) = A(~) ~ A~) , so that x E A~) . It follows 

that f ~ $(A(gJ)) . Thus ~(A(~)) ~- ~ . 

r  
The e x i s t e n c e  o f  s u c h  an i d e a l  i s  g u a r a n t e e d  by Theorem IA.  
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Suppose S is an algebraic set. We call S reducible if 

S = S 1 U S 2 , where SI,S 2 are algebraic sets, and S ~ SI,S 2 �9 

Otherwise, we call S irreducible. 

Example: Let k = Q , K = C , n = 2 , and let ~ be the ideal 

generated in k[XI,X2] by the polynomial f(XI,X2) = X~ - X~ . Then 

2 2 2 
S = A~) is the set of all x 6 C such that x I - x 2 = 0 . If S 1 

2 
is the set of all ~ 6 C with x I + x 2 = 0 , and S 2 is the set of 

all ~ 6 C 2 with x I - x 2 = 0 , then S = S 1 U S 2 , and S 1 ~ S ~ S 2 . 

Hence S is reducible. 

THEOREM IG. Let S be a non-empty algebraic set. The following 

four conditions are equivalent: 

(i) S = (~), i.e. S is the closure of a single point x , 

(ii) S is irreducible, 

(iii) ~(S) is a prime ideal in k[X] , 
= 

(iv) S -- ACId), where ~ is a prime ideal in k[X] . 
= 

Proof: (i) ~ (ii), Suppose S = A [J B , where A and B are 

algebraic sets, and A % S ~ B . We have x 6 S = A U B . We may 

suppose that, say, x 6 A . Then S = (~) ~ ~ = A , whence S = A , 

which is a contradiction. 

(ii) = (iii). Suppose that ~(S) is not prime. Then we would 

have f(X) g(X) 6 ~(S) with neither f(X) nor g(X) in ~(S). Let 

~/ = ~(S),f(X)) (i.e. the ideal generated by ~(S) and f(X)). Let 

-- ~(S),g(X)).= Let A = Ar , B = A~). In view of S = A~(S)) 

and 9/ _D ~(S) , we have A ~ S . But A ~ S since f E ~(A) and 
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f ~ ~(S) . Thus A ~ S . Similarly, B ~ S . But we claim that 

S = A U B . Clearly A U B ~ S . On the other hand, if x E S , then 
= 

f(~) g(~) = 0 . Without loss of generality, let us assume that 

f(x) = 0 . Then x is a zero of every polynomial of ~ , s@ that 

x E A . Therefore S C A U B . Thus S = A U B with A I S # B 

This contradicts the irreducibility of S . 

( i i i )  = ( i v ) ,  S e t  ~ = ~ ( S )  . T h e n  S = A ( ~ ( S ) )  = A ( ~ ) .  

Then 

(iv) = (i). Choose ~ according to Lemma IE with ~(~) = ~ . 

S = A(~) = A(~(~)) = (~)= The proof of Theorem IG is complete. 

A set S satisfying any one of the four equivalent properties of 

Theorem IG is called a variety. (More precisely, it is a k-variety.) 

If V is a variety, x E V is called a generic point of V if V = (~). 

COROLLARY IH. There is a one to one correspondence between the 

collection of all k- varieties V in ~n and the collection of all 

prime ideals ~ ~ k[X] in k[X] , given by 

v ~  = 3 ( v )  an__Ad V ~  v =A@) 

Proof: 

Also, if 

B 
L e t  V b e  a v a r i e t y  i n  a n ,. t h e ,  V - ~  ~ ( V )  -~ A ( ~ ( V ) )  = V . 

is a prime ideal in k[X] , then ~ ~ A~) ~ ~(ACB)) =~ = ~ 

E x a m p l e s :  ( 1 )  L e t  S = ~]n . Now ~ ((~n) = ( 0 )  , a p r i m e  i d e a l .  

S u p p o s e  x= = ( X l , . . . , x  n )  i s  o f  t r a n s c e n d e n c e  d e g r e e  n , i . e .  t h e  n 
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c o o r d i n a t e s  a r e  a l g e b r a i c a l l y  i n d e p e n d e n t  o v e r  k . T h e n  ~ ( ~ )  = ( 0 )  , 

s o  (~)  = A ( ~ ( x ) )  = A ( ( 0 ) )  = ~ n  . S o  a n y  p o i n t  o f  ~ n  o f  t r a n s c e n d e n c e  

d e g r e e  n o v e r  k i s  a g e n e r i c  p o i n t  o f  ~ n  . 

( 2 )  L e t  k = ~ , ~ = C , n = 2 . L e t  ~ b e  t h e  p r i n c i p a l  i d e a l  

2 2 
g e n e r a t e d  b y  f ( X l , X  2 )  = X 1 + X 2 - 1 . ~ i s  a p r i m e  i d e a l  s i n c e  f 

i s  i r r e d u c i b l e .  T h u s  A ~ )  , i . e .  t h e  u n i t  c i r c l e ,  i s  a v a r i e t y .  C h o o s e  

x I E ~ and transcendental over Q . Pick x 2 E ~ with x~ = 1 - x~ 

Then the point ~ = (Xl,X 2) belongs to A(~) In fact, x= is a generic 

point of A~) : 

2 i) i.e. To see this, it will suffice to show that ~(~) = (X + X 2 - 

2 _ 1 If g(XI,X 2) E ~(x) the principal ideal generated by X~ + X 2 . = 

that is, if g(xl,x 2) = 0 , then g(Xl,X 2) is a multiple of X~ - 1 + x~ , 

2 2 
since x 2 is a root of X 2 - 1 + x I , which is irreducible over Q(Xl) . 

More precisely, 

gc~l,X 2) = (• - 1 + ~ )  h(Xl,X 2) , 

where h(XI,X 2) is a polynomial in X 2 and is rational in X 1 

x I was transcendental, we get 

Since 

g ( x l , x 2 ~  = r + • 2 - l~ hr  

I n  v i e w  o f  t h e  u n i q u e  f a c t o r i z a t i o n  i n  @ [ X 1 ]  , i t  f o l l o w s  t h a t  h ( X 1 , X  2 )  

i s  i n  f a c t  a p o l y n o m i a l  i n  X l , X  2 T h u s  ~(x__) = (X 2 + X~ - 1)  . 

( 3 )  L e t  k = Q , ~ = C , n = 2 . L e t  ~ b e  t h e  p r i n c i p a l  i d e a l  

2 
g e n e r a t e d  b y  f ( X l , X  2 )  = X 1 - X 2 . T h e n  A ( ~ )  i s  i r r e d u c i b l e  a n d  i s  

a p a r a b o l a .  C h o o s e  x I E ~ a n d  t r a n s c e n d e n t a l  o v e r  Q , a n d  p u t  

2 
x 2 = x 1 . T h e n  ~ = ( X l , X 2 )  l i e s  i n  A r  An  a r g u m e n t  s i m i l a r  t o  
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the one given in (2) shows that x is a generic point of Ar 

example, Lindemann's Theorem says that e is transeental over ~ , 

and therefore (e,e 2) is a generic point of A m) . 

(4) Let k = @ , ~ = C . Let ~ be the principal ideal 

= (X~ - X~) . Then as we have seen above, A~/) is reducible and 

is therefore not a variety. 

(5) Consider a linear manifold M d given by a parameter 

representation 

For 

x i = b i + ail t I + ... + aid t d ( 1  < < = i = n) . 

Here the b. and the a.. as given elements of k] with the (d • n) - 
i 13 

matrix (aij) of rank d . As tl,...,t d run through ~ , x__ = (Xl,...,Xn) 

d 
runs t h r o u g h  M I t  f o l l o w s  f r o m  l i n e a r  a l g e b r a  t h a t  M d i s  a n  

�9 y t  

algebraic set. (It is a "d-dimensional linear manlfold . See also 

w  a b o u t  t h e  n o t i o n  o f  d i m e n s i o n ) .  I n  f a c t  M d i s  a v a r i e t y :  

Choose ~l'''''~d algebraically independent over k . Put 

~i = bi + ail~l + "'" + aided (I g i g n) 

a n d  ~ = ( ~ l , ~ 2 , . . . , ~ n )  6 Q n  . Now ~= E M d , 

C o n v e r s e l y ,  i f  f ( ~ _ ) - 0  , t h e n  

s o  (~_) ~ M d . 

f(b I + allT I + . . .  + aldT d , 

b 2 + a 2 1 T  1 + . . ~  + a 2 d T d , . . . , b n  + a n l T  1 + . . .  + a n d T d  ) = 0 , 

w h e r e  T 1 , . . . , T  d a r e  v a r i a b l e s .  T h u s  i f  ~ E M d , t h e n  f(x)= = 0 . 

S o  e v e r y  x 6 M d l i e s  i n  A ( ~ ) )  = (~') . T h e r e f o r e  w e  h a v e  s h o w n  

t h a t  M d = (~)  , o r  t h a t  M d i s  a v a r i e t y .  
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(6 )  T a k e  k = ~ , ~ = C , n = 2 , a n d  ~ t h e  p r i n c i p a l  i d e a l  

g e n e r a t e d  b y  f ( X I , X  2)  = X~ - 2X~ . O v e r  k = @ , t h i s  p o l y n o m i a l  i s  

i r r e d u c i b l e .  T h u s  ~[ i s  a p r i m e  i d e a l ,  a n d  A ~ / )  i s  a v a r i e t y .  

However, if we take k ~ = ~Q/2) , then f(Xl,X 2) is no longer 

irreducible over k ~ , so that 91 is no longer a prime ideal in 

kl[Xi,X2] , and Ar is no longer a variety. 

This prompts the definition: A variety is called an absolute 

variety if it remains a variety over every algebraic extension of k . 

THEOREM iI. Every non-empty algebraic set is a finite union of 

varieties. 

Proof: We first show that every non-empty collection ~ of 

algebraic sets has a minimal element. For if we form all ideals ~(S) , 

where S E ~ , there is by Theorem IA a maximal element of this non- 

empty collection of ideals. Say ~(S O) is maximal. We claim that 

S O E ~ is minimal. For if S 1 ~ S O where S 1 E ~ , then ~(SI) ~ ~(S O) ; 

but since ~(S0) is maximal, ~(SI) = ~(S0) . Thus S 1 = A(~(SI)) 

= A(~(S o )) = S o 

Suppose that Theorem II is false. Let 

algebraic sets for which Theorem iI is false. 

element S O of ~ . If S O were a variety, 

true for S O . Hence S O is reducible. Let 

be the collection of 

There is a minimal 

then the theorem would be 

S O = A U B , where 

A,B are algebraic sets, with A % S O ~ B . Since S O is minimal and 

A ~ S O , B ~ S O , the theorem is true for A,B . Hence, we can write 

A = V 1U ... U V , and B = W 1U ... U WZ where V. (I < i ~ m) and 

W (I % j % ~) are varieties. Thus 
a 
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s 0 = A U B = v 1 U . . .  U v m U w 1 U  . . .  U w~ , 

contradicting o u r  hypothesis that S O 6 ~ . 

It is clear that there exists a representation of S as 

S = V 1 U ... U V t where V i ~ V. if i ~ j . 
J 

THEOREM 1 J .  L e t  S b e  a n o n - e m p t y  a l g e b r a i c  s e t .  

of S as 

S = V 1 U  ... U V t 

T h e  r e p r e s e n t a t i o n  

where Vl,...,V t are varieties with V. ~ V. if i ~ j is unique. 
1 3 -- ' 

Proof: Exercise. 

The V. in the unique representation of S given in Theorem IJ 
1 

a r e  c a l l e d  the components of S . 

Example: L e t  k = ~ , ~ = r , n = 2 , a n d  S = A ( ( X ~  - X ~ ) )  . 

Let V 1 = A((X 1 - X2)) and V 2 = A((X 1 + X2) ) ; then S = V 1U V 2 �9 

Here VI,V 2 are two intersecting lines. 

Finally we introduce the following terminology and notation. 

We s a y  { i s  a s p e c i a l i z a t i o n  o f  x = a n d  w r i t e  

x - ~ y _  , 

i f  y E (~)= . T h i s  h o l d s  p r e c i s e l y  if f (y )=  = 0 f o r  e v e r y  f(X)= E k[X_]_ 

w i t h  f ( x )  = 0 . I t  i s  i m m e d i a t e l y  s e e n  t h a t  ~ i s  t r a n s i t i v e ,  i . e .  

t h a t  

x ~ y a n d  y ~ z i m p l i e s  t h a t  x ~ z . 

I f  b o t h  x ~ y a n d  y ~ x , t h e n  w e  w r i t e  x ~ y . T h i s  i s  e q u i v a l e n t  
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with the equation (~) = (~) . 

E x a m p l e ;  L e t  x = ( e , e  2)  a n d  y = ( 1 , 1 )  . T h e n  x ~ y . F o r  

a s  we s a w  i n  e x a m p l e  (3 )  b e l o w  T h e o r e m  ] G  , t h e  p o i n t  x i s  a g e n e r i c  

2 
p o i n t  o f  t h e  p a r a b o l a  x 2 - x 1 = 0 , a n d  ~ l i e s  on  t h i s  p a r a b o l a .  

w Dimension. 

L e t  x ~ a n . T h e  t r a n s c e n d e n c e  d e g r e e  o f  x o v e r  k i s  t h e  

m a x i m u m  n u m b e r  o f  a l g e b r a i c a l l y  i n d e p e n d e n t  c o m p o n e n t s  o f  x o v e r  k . 

This clearly is equal to the transcendence degree of k(x) over k . 

We h a v e  

0 < tr. deg. x ~ n . 

THEOREM 2A .  S u p p o s e  x ~ ~ . T h e n  

( i )  t r .  d e g .  y g t r .  d e g .  x . 

( i i )  E q u a l i t y  h o l d  i n  ( i )  i f  a n d  o n l y  i f  ~ ~ . 

P r o o f :  ( i )  I n d u c t i o n  o n  n . I f  n = 1 , a n d  i f  t r a n s ,  d e g .  x = 1 , 

t h e n  t r .  d e g .  y ~ n = 1 = t r a n s ,  d e g  x ; i f  t r .  d e g .  x = 0 , t h e n  x 

i s  a l g e b r a i c  o v e r  k . I n  t h i s  c a s e ,  s i n c e  x ~ y , t h e  c o m p o n e n t s  os  

s a t i s f y  t h e  a l g e b r a i c  e q u a t i o n s  s a t i s f i e d  b y  t h e  c o m p o n e n t s  o f  ~ , avl~ 

t r .  d e g .  y = 0 . 

To s h o w  t h e  i n d u c t i o n  s t e p ,  l e t  d b e  t h e  t r a n s c e n d e n c e  d e g r e e  

o f  x . We m a y  a s s u m e  t h a t  d < n . We m a y  a l s o  a s s u m e  t h a t  t r .  d e g .  

~ d . W i t h o u t  l o s s  o f  g e n e r a l i t y ,  we a s s u m e  t h a t  y l , . . . , y  d a r e  

a l g e b r a i c a l l y  i n d e p e n d e n t  o v e r  k . S i n c e  ~ = ( X l , . . . , X n )  ~ ( y l , . . . , y n ) =  ~ ,  

i t  f o l l o w s  t h a t  ( X l , . . . , x  d )  ~ ( y l , . . . , y d )  . By i n d u c t i o n ,  a n d  s i n c e  
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d < n , the elements Xl,...,x d are also algebraically independent over 

k . Let d < i g n o Then x i is algebraically dependent on Xl,...,x d . 

So x. satisfies some non-trivial equation 
1 

a a-I 
x i ga(Xl,...,Xd) + x i ga_l(Xl,...,Xd) + ... + go(Xl,...,Xd) = 0 

Since x ~ y , it follows that 

a a-i 
Yi g a ( Y l ' ' ' ' ' Y d  ) + Yi g a ( Y l ' ' ' ' ' Y d  ) + " ' '  + g o ( Y l ' ' ' ' ' Y d  ) = 0 . 

Thus Yi is algebraically dependent on yl,...,yd . This is true for 

any i in d < i g n . So tr. deg. ~ g d . 

(it) If x~ y , then it follows from part (i) that tr. deg. 

x = t r .  d e g ~  y . 

Suppose x -~ y and tr. deg. x = tr. deg. y . Let the common 

transcendence degree be d . We may assume without loss of generality 

that the first d coordinates YI'''''Yd are algebraically independent 

over k . Then by part (i) and by (Xl,...,Xd)-~ (yl,...,yd) , also 

Xl,...~x d are algebraically independent over k . We have to show that 

y -~ x , i.e. that if f(y) = 0 for f E k[X]_ , then f(x)= = 0 . Put 

differently, we have to show that if f(x__) ~ 0 , then f(y) % 0 . So 

let f(x) ~ 0 . Then f(x) is a non-zero element of k(x) and 

i/f(x) E k(x) Now since Xd+l,...,x n are algebraic over k(Xl,...,Xd), 

it is well known that 

k ( x )  = k ( x  1 . . . .  ,Xd)  [ X d + l , . . .  , X n ]  , 

i.e. k(x) is obtained from k(Xl,...,x d) by forming the polynomial ring 

in Xd+l, ... ,x n . 
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Thus 

i/f (x) = v(x I ..... x n)/u(x I ..... Xd) , 

where v(X1,...,X n) and U(Xl,...,Xd) are polynomials. We have 

u(x I .... ,x d) = f(x) v(x) , 

which implies that 

u (Yl ..... Yd ) = f (y) v (y) 

in view of x = ~ y = . Now yl,...,y d are independent over k , whence 

u(Yl,...,y d) ~ 0 , whence f(~) ~ 0 . Our proof is complete. 

The dimension of a variety V is defined as the transcendence degree 

of any of its generic points. In view of Theorem 2A , there is no 

ambiguity. A variety of dimension 1 is called a curve, one of dimension 

n - 1 is called a hypersurface. 

Example: Let us consider again the example of the linear manifold 

d 
M We constructed a generic point ~l,...,~n ) with k~l,...,~d) 

= k(~l,...,~n) , where ~l,...,~ d were algebraically independent. Thus 

tr. deg. k(~l,...,~ n) = d . Hence in the sense of our definition, M d 

has dimension d . This agrees with the dimension d assigned to M d 

in linear algebra. 

THEOREM 2B. (i) 

tr. deg. x = dim V . 

(ii) If W c V 

W =V . 

Let V be a variety and let x E V with 

Then x is a generic point of V �9 

are two varieties, and if dim W = dim V , then 
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P r o o f :  ( i )  Le t  ~ be  a g e n e r i c  p o i n t  o f  V . Then  ~ ~ x = and 

tr. deg. ~ = tr. deg. y . By Theorem 2A , ~<-~ ~ , so that (~)= = (~)= = V . 

(ii) Let x be a generic point of W . Now x 6 V , and tr. deg. 

x = dim V , so that by part (i) , x is a generic point of V . Thus 

(~) = W = V .  

THEOREM 2C. (i) If f(X) E k[X_] is a non-constant irreducible 

polynomial, then the set of zeros of f(X) is a hypersurface; that is, 

a variety of dimension n - 1 . 

( i i )  I f  S i s  a h y p e r s u r f a c e ,  t h e n  ~ ( S )  i s  a p r i n c i p a l  i d e a l  

( f )  , g e n e r a t e d  by  some n o n - c o n s t a n t  i r r e d u c i b l e  p o l y n o m i a l  f ( X )  E k [ X ] .  

Proof: (i) The principal ideal (f) is a prime ideal in k[X] , so A((f)) 

is a variety. Without loss of generality, suppose X occurs in f(X) , 
n 

say f(X)_ = Xan ga(Xl'''''Xn-i ) + "'" +gO(Xl'''''Xn- I) . Choose x l,...,xn_ I E 

algebraically independent over k . Choose x E~ with f(xl,...,Xn) =0 . Then 
n 

= (Xl,...,x n) 6 A((f)) . Also, tr. deg. ~ = n - 1 . Thus dim A((f)) ~ n- I. 

On the other hand, dim A((f)) ~ n , by Theorem 2B and since A((f)) ~ ~n. 

Hence dim A((f)) = n - i . In other words, A((f)) is a hypersurface. 

(ii) If S is a hypersurface, then ,~(S) is a prime ideal. 

Let g(X) E ~(S) , g • 0 . Since ~(S) is prime, there exists some 

irreducible factor f of g such that f(X) E ~(S). So (f) c_ ~(S), 
= 

whence A((f)) o_ A(~(S)) = S . But dim A((f)) = n - 1 by part (i) , 

and dim S = n - 1 . Therefore by Theorem 2B , A(f) = S . Hence 

(S) = ~(A(f)) = r ~  = (f) , 

since (f) is prime. 
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2 
E x a m p l e s :  ( 1 )  L e t  k = Q , Q = C , n = 2 a n d  f ( X , Y )  = Y -  X 

Now f is irreducible. So by Theorem 2C , the set of zeros of f is 

a hypersurface of dimension 1 . Since n - 1 = 1 , it is also a curve. 

The point (e,e 2) has'transcendence degree 1 and lies on our curve. 

Hence we see again that it is a generic point of our curve. 

(2) Same as above, but with f(X,~ = X 2 2 + Y - 1 . Again the 

set of zeros of f (namely the unit circle) is a hypersurface and also 

a c u r v e .  

Let t be transcendental and consider the point 

2t t2-1 1 
= = , / 

X 
1 

Here t = , whence k(x) = k(t) , so that x has transcendence 
1 - x  2 = = 

d e g r e e  1 . S i n c e  x l i e s  o n  o u r  c u r v e ,  i t  f o l l o w s  t h a t  x i s  a 

g e n e r i c  p o i n t  o f  t h e  u n i t  c i r c l e .  I n  p a r t i c u l a r ,  

2e e2-1 I 

is a generic point of the unit circle. 

THEOREM 2D. Let n = 1 + t , let fI(X,YI) , 

f2(X,YI,Y2),...,ft(X,YI,Y2,...,Yt) be polynomials of the type 

fi(X,YI,...,Y i) = Y~ - gi(X,Yl,...,Yi) , 

where d.i > 0 and gi is of degree < di ---in Y.i --Let ~I'''''~ 

be algebraic functions with fl(X,~l) ..... ft(X,~l,...,~t) = 0 

and suppose that 
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[ k ( X , 9 1 , . . . , ~  t ) :  k ( X )  ] : d l d  2 . . .  d t 

T h e n  t h e  e q u a t i o n s  

fl = f2 = .... ft : 0 

define a curve; that is, a variety of dimension 1 . 

Examples: (I) Let k be a field whose characteristic does not 

e q u a l  2 o r  3 . T a k e  t = 2 , s o  t h a t  n = 3 . C o n s i d e r  

f l ( X , Y 1 )  = y2 + X 2 -  1 ,  f 2 ( X , Y 1 Y 2 )  = 2 + X2 _ 4 . T h e n  ~2  = 1 -  X 2 

2 2 A x2 A x Also a n d  ~ 2  = 4 - X , o r  ~1  - a n d  ~2 = 2 

(2.1) [k(XJ~ - x 2 , ~4 - x2): k(X)] = 4 .*) 

By Theorem 2D , the equations fl = f2 : 0 define a curve. This 

curve is the intersection of two circular cylinders with radii 1,2 , 

whose axes intersect at right angles. 

2 2 
(2) Same as above, but with f2(X,YI,Y2) = Y2 + X - 1 . 

case L.~[k(X,~I,~-): k(X)] = 2 . So Theorem 2D does not apply. 

In this 

In fact 

r 
The proof of (2.1) is as follows. Since the characteristic is not 

2 or 3 , the four polynomials 1 - X , 1 + X , 2 - X , 2 + X are 

distinct and are irreducible. Hence none of 1 - X 2 , 4 - X 2 and 

(i - X2)/(4 - X 2) iS a square in k(X) , and each of ~l - X 2 , 

~ 4  -------~X , J ( 1  - X 2 ) / ( 4  - X- -~)  i s  o f  d e g r e e  2 o v e r  k (X)  . I t  w i l l  
s u f f i c e  t o  s h o w  t h a t  ~ { k ( X ,  1 ~ / ~ -  X 2)  . S u p p o s e  t o  t h e  c o n t r a r y  
t h a t  

J4- f z : r(x) + s(x) #i - x 2 

with rational functions s(x) now square and observe that 

the factor in front of ~l - X 2- must be zero. Thus 2r(X) s(X) : 0 . 

If r(X) = 0 , then (I - X2)/(1 - X 4) would be a square in k(X) , 

which was ruled out. If s(X) : 0 , then 4 - X 2 would be a square, 

which was also ruled out. 
The situation is similar to the one in Corollary 5B of Chapter II, 

w and the exercise below it. 
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A((fl,f2 )) = V 1 [J V 2 , 

where V 1 = A((fI,Y I- Y2 )') , V 2 = A(fI,Y 1 + Y2 )) ' 

Thus we do not obtain a variety. This algebraic set is the intersection 

of two circular cylinders of radius i whose axes intersect at right 

angles. Both V 1 and V 2 are the intersection of a plane with a 

circular cylinder; they are ellipses. 

(3) Let k = F , the finite field of q elements. Take t = 2 
q 

d f(X) where dl(q-l) and f2(X, Y2) = n = 3 a n d  f l ( X ' Y 1  ) = Y1 - 

q - Y2 - g ( X )  S u p p o s e  f l , f 2  t o  b e  i r r e d u c i b l e .  T h e n  ~ 1 , ~ 2  Y2 

d q 
w i t h  ~1 = f ( X )  , ~2 - ~2 = g ( X )  h a v e  

[ k ( X , ~ l )  : k ( X ) ]  = d , [ k ( X , ~  2 )  : k ( X ) ]  = q 

S i n c e  ( d , q )  = 1 , we h a v e  [ k ( X , ~ l , ~ 2 )  : k ( X ) ]  = dq  T h u s  El = f2  = 0 

d e f i n e s  a c u r v e .  I n  t h e  s ame  way o n e  s e e s  t h a t  i f  f l , f 2  b o t h  a r e  

a b s o l u t e l y  i r r e d u c i b l e ,  t h e n  f l  = f2  = 0 i s  a n  a b s o l u t e  c u r v e ,  i . e . ,  

a c u r v e  w h i c h  i s  a n  a b s o l u t e  v a r i e t y .  

Proof of Theorem 2D: Pick ~ = (x,Yl,...,y t) E ~n , such that 

the mapping X ~ x , ~i ~ Yi (i K i < t) yields an isomorphism of 

k(X,~l,...,~t) to k(X,Yl,...,Y t) .o We claim that the set of zeros 

of fl = f1 . . . . .  ft = 0 is the variety (~__). It suffices to show 

that ~(~) = (fl ..... ft) ; for then (~_) = A(~(~)) = A((f l,...,ft )) 

Clearly, every f E (fl,...,ft) vanishes on ~ ~ so (fl,...,ft) ~ ~(~), 

Conversely, we are going to show that 

(2.2) if f(x) = 0 , then f E (fl' "'" 'ft ) 
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We'll show (2.2) by induction on s , for functions 

f = f(X,YI, ...,Ys ) where 0 = < s -<- t �9 If s = 0 , then f(x) = 0 ; 

but x is transcendental over k , so f(X) = 0 , whence f E (fl,...,ft). 

Next, we show that if (2.2) is true for s-1 , it is true for s . 

d 
s occurs, replace it by gs(X,Yl, .,Ys ) In f(X,YI,...,Y s) , if Ys "" 

Do this repeatedly, until you get a polynomial f(X,YI, ...,Ys ) of 

degree < d s in Ys We observe that f - ~ ~ (fs) , and that 

(x)= 0 . Suppose 

d -i 

(2.3) ~ = YsS hd -I(X'YI'''''Ys-I ) + "'" + h0(X'YI'''''Ys-I )" 
s 

Our hypothesis implies that [k(X,Yl,...,yt): k(x)] = dld 2 ... d t , 

a n d  we h a v e  

k(x) c k(X,Yl) c k(X,Yl,y~) ~ ... c_ k(X,Yl,...,yt) 

where for each i in i g i ~ t , the field k(X,Yl,...,y i) is an 

extension of degree <_ d.l over k(X,Yl,...,Yi_l) Hence it is 

actually an extension of degree d. In particular, 
1 

[k(X,Yl,...,ys): k(X,Yl,...,y s_l ) ] = ds Since ~(x)= = 0 , we see 

from (2.3) that each h.(x) = 0 . So by induction, each h. E (fl,...,ft), 
3 = 3 

hence also ~ s (fl,...,ft) , and f 6 (fl,...,ft) The proof of (2.2) 

and therefore the proof of the ~heorem is complete. 

w  R a t i o n a l  M a p s .  

A r a t i o n a l  f u n c t i o n  ~ on  i s  a n  e l e m e n t  o f  k ( X l , . . . , X  n)  , 

i . e .  o f  t h e  f o r m  r = a ( X 1 , . . . , X n ) / b ( x 1 , . . . , X n )  , w h e r e  a ( X 1 , . . . , X  n)  

b ( X 1 , . . . , X  n)  a r e  p o l y n o m i a l s  o v e r  k . We may a s s u m e  t h a t  a , b  h a v e  

n o  common f a c t o r .  
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We say a rational function ~ is defined (or regular) at a point 

E ~n if b(~) ~ 0 �9 If ~ is defined at ~ , put ~(~) = a(x)/b(~). 

The rational functions ~ which are defined at ~ E ~n form a 

ring consisting of all a(~)/b(~) with b(~) ~ 0 . This ring is denoted 

consist of all as ~ and is called the local ring of x . Let ~x 
X 

~ ~ with ~(x) = 0 . ( Thus ~x consists of all a(X)/b(X) with 

b(x)= ~ 0 , a(~) = 0 .) Then .5 x~ is an ideal in ~x 

LEMMA 3A. (i) If x -~ y , then ~ _c 
~ y X 

( i i )  I f  x ~ y , t h e n  D = D and  ~x  = ~Z 

Proof: Obvious. 

is a maximal ideal in D , hence G/~ THEOREM 3B. (i) ~x x x 

is a field (called the function field of x). 

(ii) G / ~ x  is k- isomorphic to k(~) 

P r o o f :  ( i )  L e t  ~ ~ ~ x  ' ~ ~ 3 x  " T h e n  %0 = a ( X ) / b ( x )  , w h e r e  

= = 1 
b ( x )  ~ 0 and  a ( x )  i 0 , and  t h e r e f o r e  -- = b ( X ) / a ( X )  l i e s  i n  ~) 

= = ( 0  = = X 
= 

T h u s  e v e r y  q0 E G w h i c h  d o e s  n o t  l i e  i n  ~x  i s  a u n i t .  I t  f o l l o w s  

that ~x is a maximal ideal. 

(ii) The map w: ~) -* k(x) given by 
X 

(a ( X ) / b  (X)) = a ( x ) / b  (x)  

h a s  i m a g e  k ( x )  a n d  k e r n e l  ~x  T h e r e f o r e  k(x=) --~ G / ~ x  . 

We now come to the definition of a rational function defined on 

a variety V . The simplest definition to try would be that a rational 
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function on V is the restriction to V of a rational function ~(X) 

O n on . However, we want this rational function to be defined for at 

least some point of V . Hence by Lemma 3A it must be defined for 

every generic point x of V , i.e. it must lie in ~) Moreover, 
X 

given two functions a(X)/b(X) and c(X)/d(X) in ~) we should regard 

them as equal functions on V if their restrictions to V are equal. 

Clearly this is true precisely if their difference lies in ~x 

Thus we come to define a rational function on V as an element 

of ~ x  ' where x= is a generic point. Clearly this is independent 

of the choice of the generic point. ~ = ~ (say) consists of 
x V 

a(~)/b(~) with b(X) ~ d(V) = ~(~) , and ~x = ~V (say) consists of 
= 

a(X)/b(X) with a(X) E ~(V) , b(X) ~ ~(V) We say a function 

r(X) E k(X)_ represents a rational function ~ of V if r(X)= E ~.. 
V 

and if r(X) lies in the class ~ of ~i/~,} 
~ u 

Example: Let n = 2 , k = ~ , ~ = r , and V the circle 

2 2 
x I + x 2 - I = 0 . Let ~ be the rational function represented by 

2 2 
X 1 / X  2 . T h e n  ~ i s  a l s o  r e p r e s e n t e d  b y  (X 1 + X 1 + X 2 - 1 ) / X  2 a n d  

2 2 
b y  X 1 / ( X  2 + X 1 + X 2 - 1) , f o r  e x a m p l e .  

The rational functions defined on V 

function field of V This field is denoted k(V) 

Theorem 3B, the function field is k-isomorphic to k(x) 

is any generic point of V 

V V 
Let 

4 i  . . . . .  ~n 

b y  t h e  p o l y n o m i a l s  

form a field, called the 

In view of 

where x 

be the elements of k(V) represented, respectively, 

X1,...,X n Then it is clear that 

v v) 
k(V) = k(~l ..... ~n 
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V V 
It is easily seen that a polynomial f(Xl,...,X n) has f(%l,...,gn ) 0 

if and only if f E ~(V) Hence if ~ = (Xl,...,x n) is a generic 

V 
point, then there is a k-isomorphism k(~) ~ k(V) with xi ~ ~i 

( i  = 1 , . ~  

Example: Let n = 2 , k = r , ~ = C , and V the circle 

2 2 
x I + x 2 - 1 = 0 . We have seen in previous examples that if ~ is 

trancendental over ~, then the point (21]~2+i) ,('~2- I)/~ 2 +I)) 

is a generic point for V . Clearly k(x) = k(~) ~ k(X) . Thus the 

function field of the circle is isomorphic to k(X) 

A curve is called rational if its function field is ~ k(X) . 

n n 
Thus the circle is a rational curve. It can be shown that x I + x 2 - 1 = 0 

is not a rational curve if n > 2 and is not divisible by the 

c h a r a c t e r i s t i c .  S e e  S h a f a r e v i c h  ( 1 9 6 9 ) ,  p .  8 . 

Let ~ be a rational function on a variety V = (x=) and let y be 

a point of V . We say that ~ is defined at y_ if there exists 

a r e p r e s e n t a t i v e  r ( X )  = a ( X ) / b ( x )  w i t h  b ( y )  t 0 . I f  t h i s  i s  t h e  

c a s e ,  s e t  

w ( ~ )  = a ( y ) / b ( y ) _  _ . 

We h a v e  t o  s h o w  t h a t  t h i s  i n d e p e n d e n t  o f  t h e  r e p r e s e n t a t i v e .  S u p p o s e  

t h a t  (0 i s  r e p r e s e n t e d  b y  b o t h  a (X__) / b  ( x )  a n d  b y  a (X) / 5  (X) = a n d  

t h a t  b ( y )  ~ 0 , S ( y )  ~ 0 . T h e  d i f f e r e n c e  ( a S -  ~ b ) / ( b S )  r e p r e s e n t s  

t h e  z e r o  r a t i o n a l  f u n c t i o n  o n  V . H e n c e  a(x__)S(x=) - a ( x ) b ( x )  = 0 , 

a n d  s i n c e  x -~ y , w e  h a v e  a ( y ) b ( y )  - ~ ( y ) b ( y )  = 0 . We c o n c l u d e  t h a t  

a(y)/b(y) = ~(y)/5(y) . 
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E x a m p l e s :  ( 1 )  L e t  n = 3 , k = Q , ~ = C , a n d  V t h e  s p h e r e  

2 2 2 
x 1 + x 2 + x 3 - 1 = 0 . L e t  e b e  t h e  r a t i o n a l  f u n c t i o n  r e p r e s e n t e d  

b y  1 = 1 / 1  . P u t  ~ = ( 1 , 0 9 0 ) .  Now ~ i s  d e f i n e d  a t  y a n d  

~ ( ~ ) =  1 . Now ~ i s  a l s o  r e p r e s e n t e d  b y  1 / ( X ~  + X~ + X ~ ) .  A g a i n  t h e  

d e n o m i n a t o r  d o e s  n o t  v a n i s h  a t  ~ . I f  we  u s e  t h i s  r e p r e s e n t a t i o n ,  w e  

a g a i n  f i n d ,  a s  e x p e c t e d ] t h a t  ~ ( y )  = 1 . F i n a l l y  ~ i s  a l s o  r e p r e s e n t e d  

2 2 2 
b y  (X 1 - X 1 - X 2 - X 3 ) / ( X  1 -  1) T h i s  r e p r e s e n t a t i v e  c a n n o t  b e  u s e d  

t o  c o m p u t e  ~ ( ~ ) ,  s i n c e  i t s  d e n o m i n a t o r  v a n i s h e s  a t  [ . 

( 2 )  L e t  n ,  k ,  ~ a n d  V b e  a s  a b o v e .  L e t  W b e  t h e  r a t i o n a l  

function represented by I/X 3 . This function ~ is certainly defined 

if ~ E V and Y3 ~ 0 . We ask if there is representative of 

which allows us to define ~(~) for some ~ with Y3 = 0 �9 Let 

a(~)'b(X) be a representative. Then 
= 

1 a (X)= b (X)= - X 3 a  (X)= 

X 3 b (X) - X3b(X__) 

2 2 
v a n i s h e s  o n  V . T h u s  b ( X )  - a(X_)_ X 3 E (X + X 2 + X 3 - i )  . S o  

2 2 2 
b(X) E (X3,X 1 + X 2 + X 3 - i) , and therefore b(y=) = 0 , if y= E V 

and Y3 = 0 . It follows that ~ is defined precisely for those 

points y on the sphere which are not on the circle Y3 = 0 , 

2 2 
Yl + Y2 - 1 = 0 . 

THEOREM 3C. Let ~ be a rational function on a variety V . 

The set of points y E V for which q) is not defined is a proper 
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algebraic subset of V . 

Proof: The set of points where ~ is not defined is 

S = V n ~ A ( ( b ( X ) )  
b (X) = 

where the intersection is taken over all b(X) which occur as a 

denominator of a representative of ~ . Since the intersection of an 

arbitrary number of algebraic sets is an algebraic set, S is an 

algebraic set. In addition, S is a proper subset of V , since a 

generic point of V is not in S . 

Let ~ be a rational function of a variety V , and let W be a 

subvariety of V . We say ~ is defined on W if ~ is defined at 

a generic point of W . 

A rational map ~ from a variety V to om is defined simply 

as an m- tuple of rational functions (~l,...,~m). We say ~ is 

defined at y ~ V , if each ~i(~ ) is defined at ~ �9 If this is the 

case, put ~([) = (~l(~),...,~n(~)). The set of points ~ E V for which 

is not defined is the union of the sets of points for which ~i is 

not defined (i = 1,...,m). In view of Theorem 3C , and since a finite 

u n i o n  o f  p r o p e r  a l g e b r a i c  s u b s e t s  o f  a v a r i e t y  i s  s t i l l  a p r o p e r  a l g e b r a i c  

subset, the points where ~ is not defined are a proper algebraic subset 

of V . 

The image of ~ is defined as the closure of the set of points 

~(y) , ~ E V A for which ~ is defined. 

THEOREM 3D. The image of ~ is a variety W . If x is a generic 

point of V , then ~0(x) is a generic point of W . 
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Proof: Let V = (~) �9 If x ~ Z and if ~([) is defined, we 
= = _ 

h a v e  t o  s h o w  t h a t  ~ ( x )  -)  ~_(y) L e t  ~_ = ( e l , . . . , ~ m )  , a n d  s u p p o s e  

that e i is represented by a i(x)/b i =  (X)= with b.1 (y)= / 0 . Let 

f(~(x)) = 0 and suppose that f(U) = f(UI,...,U m) is of degree d 
-- = * _-- i 

in U. Put 
l 

d d 
1 m 

g(Ul .... 'Urn ' VI'''''Vm) = Vl "'" Vm 

S i n c e  f ( a l ( x _ _ ) / b l ( X = ) , . . . , a m ( X = ) / b m ( X ) )  = 0 , i t  f o l l o w s  t h a t  

g(al(x),...,am(X),bl(X),...,bm(X))= = = = 0 . But x=-~ y= , so 

g ( a  l ( y _ _ ) , . . . , a  m ( y = ) , b  l ( y _ _ ) , . . . , b  r e ( y ) )  = 0 , a n d  

d d / a i (y-) am (y-) 
bl(Y)= 1 . . .  hm (y)~ m f [ ~  , ' ' ' , ~ ]  =0 . 

Since 

d d 

bl(Y__ ) 1 . . .  bna(y__ ) r~ 0 , it follows that 

a 1 (Y=) am (y) 
= f ] = o . 

So  e v e r y  p o l y n o m i a l  f v a n i s h i n g  o n  ~ ( x )  a l s o  v a n i s h e s  on  ~ ( y )  , 

a n d  ~p(x) ~ ~ ( y )  . 

2 2 1 
E x a m p l e :  L e t  V b e  t h e  s p h e r e  x 1 + x 2 + x 3 = 1 , a n d  l e t  

~_: V - ~  f~2 h a v e  a r e p r e s e n t a t i o n  a s  ~_ = ( ( X  + X 2 ) / X  3 , - 1 / X  ) . 

~= = ( ~ 1 , ~ 2 , ~ 3 )  b e  a g e n e r i c  p o i n t  o f  V �9 We h a v e  

~2 1 1 - I , -~ �9 

~(~-)= k ~2 ' ~3 

Let 
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Thus qo~)_ _ = ( ~ i , ~ 2 )  s a t i s f i e s  ~ i  + ~2 + i = 0 �9 S i n c e  ~ _ )  has  

transcendence degree i , it is in fact a generic point of the line 

z I + z 2 + i = 0 . Thus this line is the image of ~ . But not every 

point on this line is of the type 

and is ~ (-i,0) , then if we pick yl,Y2,y 3 in 

2 2 2 
Yl + Y2 + Y3 - 1 = 0 , we obtain ~(y) = (Zl,Z 2) 

is not of the type ~(y) For if Y3 ~ 0 , then 

if Y3 = 0 , then ~(y) is not defined. 

~(Z) . If (Zl,Z 2) is on the line 

with Ys = l/J  
But (Zl,Z 2) = (-i,0) 

~(Z) I (-i,0) , and 

THEOREM 3E. Let ~ be a rational map from V with image W . 

Let T be a proper algebraic subset of W . Then the set L ~ V 

consisting of points Z where either 

~(y) s T , is a proper algebraic subset of 

is not defined or where 

V . 

Proof: Suppose W and T lie in ~m . Suppose T is defined 

by equations gl(y) ..... gt(y) = 0 , where =y = (yl,...,ym) . 

Let gi(Yl '''''Y-)IIL have degree dij in Y. (i ~- i ~ t , 1 ~- j ~- m). 
3 

Put 

~ Y) 
hi(Yl "''Ym' Zl .... Zm) = Zdil Z im gi ..... 

' . . . . .  ZI' m 

Let 

r= .~ r_I~= (aI(X)/bI(X),...= = , am (X) /bm (X) = 

represent ~ and put 

r 

%=i" (X)= = b l ( X ) . . . b m ( X ) =  = h i ( a l ( X )  , =  . . . , a m ( X ) , b l ( X )  , =  = . . . ,b in(X))= (I - ~ i = < t) . 

Let L r consist of points y = of V with 

w r i 

s (Y)= . . . . .  ~ t  (y)= = o m 
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We claim that 

( 3 . 1 )  L = ~ L , 
r 

with the intersection taken over all representations r of ~ . In 

r 

fact if y ~ L for some r , then some Z-(y) • 0 , and hence 
__~ r = I = 

b l ( Y = m ) . . ,  bm(Y) r 0 a n d  g i ( a l ( Y ) / b l ( Y  = ) , . . . , a m ( y ) / b m ( y = ) )  t 0 . So 

~(y) is defined and gi(~(Y-)) ~ 0 , so that ~(y_) ~ W and y= ~ L . 

On the other hand if y ~ L , then ~(y) is defined, and for some 

representation r we have bl(Y__)-., bm(Y) I 0 . Moreover, ~(y_) ~ T , 
r 

whence some gi(~(y)) ~ 0 and ~=(y) ~ 0 . Thus y ~ L r and (3.1) 

is established. 

I n  v i e w  o f  ( 3 . 1 )  , L i s  a n  a l g e b r a i c  s u b s e t  o f  V . S i n c e  a 

generic point of V lies outside each L , the set L is a proper 
r 
= 

algebraic subset. 

Example. Let V -C ~3 be the sphere x2 + x22 + x2 - 1 = 0 and 

let W _c ~2 be the line z I + z 2 + 1 = 0 . We have seen above that 

2 2 _ I / X  2)  h a s  i m a g e  W �9 t h e  map  ~ r e p r e s e n t e d  by  ((X + X2) / X3  , 

L e t  T c W c o n s i s t  o f  t h e  s i n g l e  p o i n t  ( 0 , - 1 ) .  I t  i s  e a s i l y  s e e n  t h a t  

the set L of points 3, where ~(y) is not defined or where ~(Y_) E T 

consists of y__ E V with Y3(y2 _ l) = 0 . 
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4. Birational Maps. 

We define a rational map from a variety V to a variety W as a 

rational map ~ of V whose image is contained in W �9 We express 

this in symbols by ~: V ~ W . 

Let ~: V ~ W and ~: W ~ U be rational maps such that ~ is 

defined on the image of V under ~ . Thus if ~ is a generic point 

of V , then ~ is defined on ~(x) Suppose V c v Qw . _ , W ~  , 

U ~ u , and  s u p p o s e  ~ i s  r e p r e s e n t e d  by  

(4. i) (a I (X=)/b l (X=) , . . . ,a  w (X=)/b w (X=)) , 

and ~ is represented by 

(4.2) (c I (Y__)/d I (Y=),-..,c u (Y)/d u (Y_)) , 

where dl,...,d u are non-zero at ~(x) Let ~ be the rational 

map V ~ represented by 

(4.3) (cl(al(X=)/bl(X),...)/dl(al(X__)/bl(X__) .... )),...,Cu(...)/du(...)) . 

Since dl,...,d u are not zero at %0(x) , each of the u components 

and ~ ~ (x) is defined and equals ~ (qg(x)) in (4.3) lies in O x , _ _ 
= 

It is clear that ~_~_ is independent of the special representations 

(4.1) , (4.2) of ~ , ~ , respectively. We call ~_~ the composite 

of ~ and [0 �9 If v is a point of V such that (p is defined 

at v and ~ is defined at ~(v)~ then ~= is defined at v and 

t_ ~ (Z) = t (~ (v)) 

But ~(v) may be defined althongh perhaps either q(v) is not defined, 
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or <p(v) is defined and ~(%0(v)) is not defined. 

Examples. (i) Let V = ~i , W = ~2 U = V ~I Further let , = o 

~_: V -~ W be represented by (X 2,X) , and let ~: W -~ V be represented 
= 

by XI/X 2 �9 Then ~_ is the identity map on V . Thus ~=~ is 

defined on 0 and ~_~ (0)= 0 . However ~(0) = (0,0), and ~ is 

not defined at (0,0) 

(2) Let k = @ and ~ = C . Let V = ~i, W the unit circle 

2 2 Q 1  
x 1 + x 2 - 1 = 0 , a n d  U = V = F u r t h e r  l e t  ~_: V ~ W b e  

r e p r e s e n t e d  b y  ( 2 X / ( X  2 + l )  , (X 2 -  1 ) / ( X  2 + 1 ) )  , a n d  l e t  ~ :  W -~ V b e  

r e p r e s e n t e d  b y  X l / ( 1 - X  2 )  . T h e n  ~=~_ i s  t h e  i d e n t i t y  m a p  o n  V a n d  

~ is the identity map on W . In particular, ~ is defined at 

i and ~_~ (i) = i , but ~ is net defined at i . 

Exercise. Show that in Example (2) , ~ is defined for every 

point of V except for i , -i , and that ~ is defined for every 

point of W except for (0,i) Further show that every point of V 

with the exception of i,-i is of the type ~ (y) with ~ E W , and 

every point of W with the exception of (O,l) is of the type ~(x) 

with x E V . Hence if V t is obtained from V by deleting i, -i 
= 

and W s is obtained from W by deleting (0,i) , then ~ and 

provide a l-l correspondence between points of V ~ and of W t 

A rational map ~: V ~ W is called a bi-rational map (or a 

bi-rational correspondence) if there exists a rational map 4: W ~ V 

such that ~ is the identity on V and ~__~ is the identity on W . 

Two varieties are bi-rationally equivalent if there exists a bi-rational 

c o r r e s p o n d e n c e  b e t w e e n  t h e m .  We d e n o t e  t h i s  b y  V ~ W . T h i s  i s  a n  
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equivalence relation of varieties. (Note that this relation is defined 

in terms of the ground field k). 

THEOREM 4A. Let ~ be a hi-rational map from V to W with 

inverse ~ . Then there exist proper algebraic subsets L of V and 

M of W , such that on the set theoretic differences V~L and 

W--~M , the maps ~ and ~ are defined everywhere and are inverses of 

each other. 

Proof: Let S be the subset of V where ~ is not defined. 

Let T be the subset of W where ~ is not defined. Let L be the 

subset of V where either ~ is not defined or where ~(x) E T . 

Similarly, let M be the subset of W where either ~ is not defined 

o r  w h e r e  ~ (x )  E S . I n  v i e w  o f  T h e o r e m  3E , t h e  s e t s  L ,M a r e  p r o p e r  

algebraic subsets of V,W, respectively. Now ~ is defined on V~'L . 

Clearly, if ~ E V~L , then ~(x) ~ T . So ~(~(x)) is defined; but 

then ~(~(x)) = ~ . From this it follows that ~(x) E W~M , since 

~ S . So the restriction of ~ to V~L maps V~L into W--M . 

The restriction of ~ to W~M maps W--M into V~L . These maps 

are inverses of each other. 

THEOREM 4B. Let V and W be varieties. Then V ~ W if and 

only if their function fields are k- isomorphic. 

Proof: If ~ is a generic point of V and ~ is a generic 

point of W , then the function fields are isomorphic to k(x) and 

k(y) , respectively. So we need to show that V ~ W if and only if 

k(x) is isomorphic to k(y) 
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S u p p o s e  t h a t  V ~ W . L e t  ~ :  V ~ W a n d  ~ :  W ~ V b e  b i - r a t i o n a l  

m a p s ,  s u c h  t h a t  ~ a n d  ~ a r e  t h e  i d e n t i t y  m a p s  o n  W a n d  V , 

respectively. 

It is clear from Theorem 4A that the "image" of V under ~ is 

W . Thus if x is a generic point of V , then by Theorem 3D the 

point y = ~(x) is a generic point of W . We have y = ~0(x) and 

x = ~ (y_) , w h e n c e  k ( y )  _c k ( y )  a n d  k ( x )  _c k ( y )  , w h e n c e  k ( x )  = k ( y )  . 

Thus the function fields are certainly k-isomorphic. 

Conversely, let k(x__) be isomorphic to k(y), wherex= (x l...,xn),y== (yl,...~Vm) 

are generic points of V , W respectively. Let ~ be a k- isomorphism 

from k(x) to k(y) Let C~(x i) = x! (i = l,...,n) and put 

x = (Xl,...,x) Then k(x__') = k(y) and = is again a generic point 

of V Thus we may suppose that k(x) = k(y__) Suppose that 

and 
Yi = ri(x) (i = l,...,m) 

xj = sj(y__) (j = 1,...,n) 

... and ...,s n . Then for certain rational functions rl, ,r m Sl, 

~: V ~ W represented by (rl(~),...,rm(~)) and ~: W ~ V represented 

by (Sl(Y),...,Sn(~)) are rational maps which are inverses of each other. 

In w we defined a rational curve as one whose function field 

is isomorphic to k(X) . In view of Theorem 4B , we may also define 

a rational curve as a curve which is birationally equivalent to ~i . 

LEMMA 4C. The following two conditions on a field k are 

equivalent. 

(i). Either char k = 0 , or char k = p > 0 and for every 

there is a b E k with b p = a . 

a E k  
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(ii), Every algebraic extension of k is separable. 

Proof. We clearly may suppose that char k = p > 0 . 

(i) -~ (ii). A polynomial of k[X] of the type 

(4.4) a 0 + alXP + ... + at Xtp 

e q u a l s  ~ 0  + b lX + " ' "  + b t  x t )  p w h e r e  bP = a ( i  = O , . . . , t ) .  Thus 
1 1 

an  i r r e d u c i b l e  p o l y n o m i a l  o v e r  k i s  n o t  o f  t h e  t y p e  ( 4 . 4 ) ,  h e n c e  i s  

separable. 

(ii) ~ (i). Suppose then is an a E k not of the type a = b p 

with b E k . Then there is a b which is not in k but in an 

algebraic extension of k, with a = b p . Since p is a prime, it is 

easily seen that i = p is the smallest positive exponent with 

b i E k . The polynomial X p - a = (X - b) p has proper factors (X -b) i 

with 1 = < i = < p- 1 , but none of these factors lies in k[X] since 

b i ~ k . Thus X p - a is irreducible over k , and b is inseparable 

o v e r  k . 

A field with the properties of the lemma is called perfect. A 

Galois field is perfect. For if a lies in the finite field F with 
q 

a q (ap~-l) p 

q = p elements, then a = = 

THEOREM 4D. Suppose V is a variety defined over a perfect ground 

field k . Then V is birationally equivalent to a hypersurface. 

P r o o f .  S u p p o s e  dim V = d and ~ = ( X l , . . . , x  n) i s  a g e n e r i c  

point of V . Then n = d . In view of Theorem 4B it will suffice 

to show that there is a ~ = (yl,...,Yd+l) with 
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( 4 . 5 )  k ( x )  = k ( y )  . 

We shall show this by induction on n-d . If n-d = 0 , set 

Yl = Xl'''''Yd = Xd ' Yd+l = 0 . If n- d = 1 , set ~ = ~ . Suppose 

now that n- d > 1 and that our claim is true for smaller values of 

n- d . We may suppose without loss of generality that Xl,...,Xd+ 1 

have transcendence degree d over k . Then (Xl,...,Xd+l) is the 

generic point of a hypersurface in ~d+l . This hypersurface is defined 

by an equation f(zl,...,Zd+l) = 0 where f(Zl,...,Zd+l) is irreducible 

over k . Since k is perfect, it is clear that f is not a polynomial 

in Z~,...,Zd+ 1 p if char k = p > 0 . We may then suppose without loss 

of generality that f is not a polynomial in ZI' "'''Zd ' ZPd+I " Thus 

f is separable in the variable Zd+ 1 , and Xd+ 1 is separable algebraic 

over k(Xl,...,Xd) By the theorem of the primitive element (see 

Van der Waerden, w there is an x' with 

k(Xl,...,x d , Xd+ 1 , Xd+ 2) = k(Xl,...,Xd,Xl). 

Thus x I = (Xl,...,x d , x I , Xd+3,...,x n) has k(x s) = k(x) . By induction 

hypothesis there is a Y ~ ~d+l with k(x t) = k(y=), hence with (4.5). 



250 

5. Linear Disjointness of Fields 

LEMMA 5A: Suppose that ~ , K , L , k 

k-C K c- ~ , k _c L-C Q : 

are fields with 

The following two properties are equivalent: 

(i) If elements Xl,...,x of K are linearly independent 
m - -  

over k , then they are also linearly independent over L . 

(ii) If elements yl,...,y n of L are linearly independent 

over k , then they are also linearly independent over K . 

Proof: By symmetry it is sufficient to show that (i) implies 

(ii). Let yl,.~176 n of L be linearly independent over k . Let 

. of K be not all zero. We want to show that x I , -~ n 

( 5 .  l) xlY I + ... + XnY n r 0 . 

Let d be the maximum number of Xl,...,x n which are linearly inde- 

pendent over k . Without loss of generality, we may assume that 

Xl,...,x~ are linearly independent over k ~ Thus for d < i <__ n 

d 
we have x. = }' c. x. , where c E k . We obtain 

1 ~--J~- xJ  J i j  
j = l  

n 

X l Y l +  " ' "  + XnYn = ( y l  + i=d+12 Cil Yi) xl 
+ . ~ 1 7 6  

Yd + 

n 

2 
i=d+l 

Cid Yi) Xd 
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Here xl,oO.,X d E K are linearly independent over k , whence linearly 

independent over K ~ Their coefficients are not zero since yl,~ 

Yn are linearly independent over k ~ Thus (5.1) follows. 

We say that field extensions K , L of k are linearly disjoint 

over k , if properties (i) and (ii) hold. 

Examples: (i) Consider the fields 

r (x) 

/ \  
Q( ~,rg i / (x )  

Here Q(./2) and ~(X) are linearly disjoint over Q o For if 

(a + b ~/2 ) and c + d E ) are linearly independent over Q , then 

clearly they are linearly independent over Q(X) 

(ii) Let X,Y,Z,W he variables, and consider the fields 

r 
/ \ 

~(Z,W, XZ + YW) 

. 

In this case @(X,Y) and ~(Z,W,XZ + YW) are not linearly disjoint 

over C For Z,W,XZ + YW are linearly dependent over ~(X,Y) , 

but are linearly independent over 
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LEMMA 5B: Let us consider fields 

.q 
/ \ 

K L , 
\ k /  

where L is the quotient field of a ring R . For linear disjointness 

it is sufficient to show that if Zl''~176 E R are linearly independent 

over k , then they are also linearly independent over K . 

Proof: Let yl,.o.,Yn E L be linearly independent over k o 

We can find a z ~ 0 , z E R , such that zyl,.oo,Zy n E R o Now 

zyl,..o,Zy n are linearly independent over k, hence also linearly 

independent over K . Therefore yl,..o,Yn are linearly independent 

over K o 

LEMMA 5C: Suppose we have fields 

/\ 
K L , 

\ k / 

where K is algebraic over k . Let KL be the set of expressions 

Xl Yl + "'~ + Xn Yn with x.l E K , Yi E L for 1 g i g n t and with 

arbitrary. 

(i) The set KL is a field, it contains K and L , and is 

the smallest such field. 

(ii) Suppose that [K : k] is finite. Then [EL : L] 

[K : k] ~ with equality precisely if K ~ L are linearly 

disjoint over k ~ 
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(iii) Now suppose that K , L are linearly disjoint over k o 

Let ~ be a k-isomorphism from K to a field H containing 

k . Let ~ be a k-isomorphism from L to H ~ Then 

Xl Yl + "" ~ + Xn Yn -+ ~(xl) ~- (Yl) + "'' + ~(xn) B (Yn) 

is a well-defined map from KL to H . It is a k- 

isomorphism into H ~ 

Proof; Exercise. 

LEMMA 5D. Suppose we have a diagram of fields and subfields 

k K 

\/ 
k 

where k is perfect and k is the al~ebraic closure of k Then 

K , k are linearly disjoint over k if and only if k i_~s algebraically 

closed in K. 

Proof: If k is not algebraically closed in K , then there 

exists a proper algebraic extension k I of k with k I ~ K ; 

/ \ 
k K 

k 
i 1 
k 

It is now clear that k and K cannot be linearly disjoint over k 
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Conversely, suppose that k is algebraically closed in K It 

suffices to show that k 2 , K are linearly disjoint over k , where 

k 2 is any finite algebraic extension of k Since k is perfect, 

k 2 = k(x) , and we have the following diagram of fields: 

k 2 = k ( x )  

k 

If f(X) is the defining polynomial of x over k , then it 

remains irreducible over K, since every proper factor of f(X) has 

coefficients which are algebraic over k , with some coefficients not 

in k , and hence not in K 

So for the fields 

K ( x )  = K �9 k ( x )  

k ( x )  = k 2 

k 

we h a v e  [ K ' k ( x )  : K ]  = [ k ( x )  : k ]  ; h e n c e  k ( x ) , K  a r e  l i n e a r l y  

d i s j o i n t  o v e r  k b y  Lemma 5C~ 

6. Constant Field Extensions 

Consider fields k, K, ~, such that k C K ~ ~ , and ~ is 

algebraically closed and has infinite transcendence degree over K ~ 

T 
If x s Qn , then ~k(X)= is the ideal of all polynomials f(X)= s 

k[X] with f(x_) = 0 . We have seen in w that ~Jk ~ (x)= = ~, is a 

TGiven a subset Me_ ~n ~ M we write ~Sk( ) or ~K(M) for the set of 

polynomials f(X) in k[=X] or K[X], respectively, which vanish 
on M . 
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prime ideal in k[{] . Similarly, ~K({) = ~ is a prime ideal in 

K[~] . Let .~ K[~] be the ideal in K[~] generated by ~ ~ The 

[~] f i d e a l  ~K c o n s i s t s  o f  a l l  l i n e a r  c o m b i n a t i o n s  C l  f l  + " ' "  + am m 

w h e r e  c i e K , f i e  ~ ( i  = 1 . . . . .  ,m) . C l e a r l y  ~:K[~]  ~ ~ . D e n o t e  

t h e  c l o s u r e  o f  a p o i n t  x w i t h  r e s p e c t  t o  k , K by  ( ~ ) k  , (~)K , 

- - k  
r e s p e c t i v e l y .  We h a v e  (~) = A(~)  = A ( ~ K [ ~ ] )  ~ A(~)  = (~)K= ~ So 

(~) K c (~) k 

Example: Let k = ~ , K = Q(~ ) , ~ = C , and n = 2 . 

Consider the point (e~/~, e) = x . Then (~)k is the set of zeros 

of the polynomial X 2 - 2Y 2 But (~)K is the set of zeros of 

X -~/~ Y . 

THEOREM 6A. Let k ~ K ~ ~ be fields, where ~ is algebraically 

closed and has infinite transcendence degree over K Let x E ~n o 

~k(~) =~ , ~K(~) = ~ o Consider the following four properties: 

(i) The fields K , k(x) are linearly disjoint extensions of 

k , 

( i i )  ~ = ~ K [ x ] , =  

( i i i )  ( ~ ) k  (K)K , 

(iv) �9 = J ~ [ x ]  

The properties (i), (ii) are equivalent. Property (ii) 

implies property (iii), which in turn implies property (iv). 

Proof: To show that (i) implies (ii), let f(X) E "~ . Write 
n 

f(X)= = ~ a i fi(X)= , w h e r e  a.1 E K , fi(X)= E k[X]_ , and  ax,. . ~  n 
i = l  n 

a r e  l i n e a r l y  i n d e p e n d e n t  o v e r  k . Now f(x_) = 0 , s o  ~ a i r  i (_x_) = 0 . 
i = l  
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By the linear disjointness of K and k(x) , the a. 's are linearly 
= 1 

independent over k(x) o It follows that each f. (x) = 0 , and each 
= 1 -- 

fi(X) E o~ �9 Thus f(X) E ~ K[X] 

To show that (ii) implies (i), let Ul(X),..o,Us = be elements 

of k[X] , such that Ul(X),...,u~ (x) are linearly independent over 

k . By Lemma 5B, it will suffice to show that Ul(X),...,u~(x)= 

remain linearly independent over K . Suppose alUl(X) + o.. + 

as (x)= = 0 , with a.l E K o Let f (X): : alu I (X)= + . . ~ + a~u~ (X)= . 

Since f(x)= = 0 , the polynomial f(X)= lies in "% =~K[X] o We have 

a relation 

(6.1) _ f (x) alUl(X)_ + ..~ + a~u~(X)= = blfl(X)= + ~ + bm m = ' 

where b. E K , f. (X) E 
1 1 ---- 

(i = l,~ We may assume that 

fl'''''fm are linearly independent over k . We claim that 

Ul(X),...,u~(X)= = , fl(X),...,fm(X)= = are linearly independent over k . 

Suppose that 

(6.2) 
m 

~ ciu i(x)= + ~ d f (x) =0 
i=l j=l JJ= ' 

where c. , d E k . Substituting x for X , we obtain 
i 3 = = 

0 the u (x) are linearly independent over ciui (x) However, g 

i=l = i = 

k , so that Cl,...,c ~ are all zero. Thus (6.2) reduces to 

m 

d.f.(X) = 0 . But the f.(X) are linearly independent over k , 
j=l 3 3 = J = 

and hence d I = .... dm = 0 ~ We have established the linear 

independence of Ul(X),.~176 S (X), fl(X),.~ over k . These 

9 + m polynomials have coefficients in k and are linearly inde- 

pendent over k , and hence they are also linearly independent over 
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r 
K Hence in (6.1), all the coefficients are zero, and in particular 

a I = ... = a~ = 0 ~ 

We next want to show that (ii) implies (iii). Let y 6 (~)k= 

Then f(y) = 0 if f(X)_ E ~ . Since ~ = 4~k[X] ,_ we have g(y)= = 0 

f o r  e v e r y  g ( X )  E ~ . T h u s  y E A ( ~ )  = (~-__)K . H e n c e  (~)k= G (~)K= , 

a n d  s i n c e  t h e  r e v e r s e d  r e l a t i o n  i s  a l w a y s  t r u e ,  we o b t a i n  ( i i i ) ~  

Finally, we are going to show that (iii) implies (iv). Suppose 

f(X) E ~ Then f vanishes on (~)K (~)k , and f E ~K(=) 

= =J E[ I �9 so �9 0onversely, 

we h a v e  , ~ K [ ~ ]  ~ ~ , w h e n c e  J ~ K [ ~ ]  G J ~  = ~ . 

Example: We give an example where ~x) K = ~x) k = = , but ~ r q K [ ~ ]  

T h u s  ( i i i )  d o e s  n o t  i m p l y  ( i i ) .  L e t  k 0 b e  a f i e l d  o f  c h a r a c t e r i s t i c  

p , a n d  l e t  k = k 0 ( z )  , w h e r e  z i s  t r a n s c e n d e n t a l  o v e r  k 0 . P u t  

( t , t ~ )  , w h e r e  t i s  t r a n s c e n d e n t a l  o v e r  k ~ T h e n  .~  = ~ k ( ~  ) = 

P i s  a n  i r r e d u c i b l e  p o l y n o m i a l  o v e r  k (zX~ - X~) , since zX~ - X 2 

NOW t a k e  K = k ( P ~ )  T h e n  ~ = ~ E ( ~  ) = ( ~  X 1 - X2) , a n d  ~ t 

K [ ~ ]  We h a v e  ( ~ ) k  = A~zX~ - X ~  a n d  (~_)K = A @ ~  X 1 - X2~  . 

We observe that (~)k= = (~)K= , since if (u,v) E A~zX~ - X~)) , then 

z u  p - V p = ( ~ Z  U - V) p = 0 , SO t h a t  ( u , v )  E A ~ f ~  X 1 - X2~ . 

X = 

THEOREM --6B" Let k , K , x= , ~ , ~ be as in Theorem 6A. 

Suppose, moreover, that K is a separable algebraic extension of 

Then J~ K[~] = .~ K[~] . 

k . 

f 
Linearly independent vectors in a vector space k t over k remain 

linearly independent in the vector space K t , where K is an over- 
field of k . 
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P r o o f :  L e t  f E J ~  K--~= . T h e r e  i s  a f i e l d  K 0 w i t h  k ~ K 0 c K 

w h i c h  i s  f i n i t e l y  g e n e r a t e d  o v e r  k , s u c h  t h a t  f E K0[X ] and  
n 

f E J . 7  K0[X ] . L e t  f = ~ c i f i ,  w h e r e  f . (X) l  = E k[X]  , =  c i  e K 0 , a , ~  
i = l  

. are linearly independent over k . In fact, by allowing e I , .-,a n 

some fx to be zero, we may suppose that Cl,...,c n are a basis for 

K 0 over k , where n = [K 0 : k] o There are n distinct k- 

isomorphisms ~ of K 0 into Q ; write c ~ for the image of c 

under ~ We put 

n 

f~ (X)  = ~ e ~ f i ( X )  
i = l  

Here the (nXn)-determinant 

d(~) such that 
l 

ql is not zero, and hence there are c i 

f .  (X) = ~ ~cY)ocy. i (X) ( i  = 1 , . . , , n ) ,  

Now f o r  some m , E ~ K  0 , w h e n c e  (fcy)m E X] , w h e n c e  

( f ~ ) m ( x )  = 0 , and  t h e r e f o r e  f C ( x )  = 0 f o r  e a c h  c5 �9 Thus e a c h  

f ' l  (X)z z 0 , and  f i  E ~ �9 We h a v e  shown t h a t  f E ~ K 0 [ X  ] -C~K[X]= . 

I t  f o l l o w s  f r o m ~ h e o r e m s  6A, 6B, t h a t  t h e  f o u r  p r o p e r t i e s  l i s t e d  

in Theorem 6A are equivalent if K is a separable algebraic extension 

of k . Now if k is perfect, then every algebraic extension K of 

k is separable. Thus we obtain 

COROLLARY 6C. If k is perfect and if V is a variety over k 

w i t h  g e n e r i c  p o i n t  x , t h e n  V i s  an  a b s o l u t e  v a r i e t y  i f  and  o n l y  
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i f k (x) 

only if 

and k are linearly disjoint over k. 
*) 

k is algebraically closed in k(x) 

This is the case if and 

THEOREM 6D. Let k be a perfect ground field. 

(i) I f  f(X) E k[X] i s  n o t  c o n s t a n t  and  i s  a b s o l u t e l y  i r r e -  

ducible, then the set of zeros of f is an absolute 

hypersurface. 

(ii) I_~f S is an absolute hypersurface, then ~k(S) = (f):, 

where f is absolutely irreducible and nonconstant. 

Proof: (i) This follows directly from Theorem 2C, and the fact 

that f is absolutely irreducible. 

(ii) From Theorem 2C it follows that ~k (S) = (f)k' where f 

is nonconstant and irreducible over k . Let K be an algebraic 

extension of k . Then ~K(S) =~ =~K[~] = (f~K[X]= = (f) K Thus 
$ 

the principal ideal generated by f in K[~] is a prime ideal, 

f is irreducible over K . 

REMARKS (i). Let k be perfect and let V be a variety over k 

In Theorem 4D we constructed a hypersurface S which was biration- 

ally equivalent to V �9 In fact, the construction was such that 

k(x) = k(y) , where x , y were certain generic points of V , S , 

respectively. Now if V is an absolute variety, then k is algebraically 

t We write (f)k resp. (f)K for the principal ideal generated by 

i n  k [X]  and  i n  K[X_]_ 

* ) C o m p a r e  w i t h  T h e o r e m  3A o f  Ch.  V.  
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closed in k(~) = k(~) , and S is also an absolute variety. 

(2) Another approach to Corollary 6C is this: It may be shown 

directly that if two k-varieties are k-birationally equivalent, and 

if one is absolute, then so is the other. Thus the proof may be 

reduced to the case of a hypersurfaee. But this case is essentially 

Theorem 3A of Ch. V. 

7. Counting Points in Varieties Over Finite Fields 

The goal of this section is a proof of 

THEOREM 7Ao Let V be an absolute variety of dimension d 

defined over k = F Let N = N (V) be the number of points 
q M 

y = (yl,...,yn) --in V with each coordinate in Fq~ . 

vd (q~(d - I/2)) 
(7.1) % = q + 0 

Then as M ~ ~ 

The proof will depend on a result we derived in Chapter V. 

Namely, if f(XI,...,X n) E Fq[XI,o..,Xn] is nonconstant and absolutely 

irreducible and if N is the number of zeros of f in F , then 
q 

(?.2) IN- qn-i I ~ cqn - 3/2 , 

where c is a constant which depends on n and the total degree of 

f o For n = 2 , this result is Theorem iA of Chapter III, and for 

general n it is Theorem 5A of Chapter V. Only the case n = 2 is 

needed if V is a curve, 
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LEMMA 7B: Theorem 7A is true for hypersurfaces. 

Proof: Let S be an absolute hypersurface of dimension d . 

By Theorem 6D, S is given by f(x) = 0 , where f(X) is not con- 

stant and is absolutely irreducible. Thus by (7.2), 

IN - qd 1 = I N -  q n - l l  <- cq  n - ( 3 / 2 )  = cqd - 1 /2  

Now applying this result to Fq~ instead of Fq , we see that 

/~ - q 'd /  ~ eq  ~ ( d  - 1 / 2 )  

Theorem 7A for the general variety is done by induction on d . 

If d = 0 and V = (~) , then every z E F (x) is algebraic over 
---- q = 

F , and so satisfies an equation 1 . z - ~ ~ 1 = 0 where ~ E 
q q 

Thus z , 1 are linearly dependent over ~ Since F (x) and 
q q = q 

are linearly disjoint over F , it follows that z , 1 are linearly 
q 

dependent over F So z E F , and F (x) = F Thus x has 
q q q = q = 

coordinates in F , and V = (x) = x ~ It follows that N = 1 for 
q = = 

every ~ . 

In order to do the induction step from d - 1 to d , we shall 

need 

LEMMA 7C~ Suppose Theorem 7A is true for absolute varieties of 

dimension <d ~ Let W be a variety of dimension < d , not neces- 

sarily an absolute variety. Then as ~ ~ ~ , 

N (W)=0 (q ~(d-l)) 

Proof: It ~ clear that W is still an algebraic set over 

K = ~ , but not necessarily a K-variety. So W is a finite union 
q 

W = W 1 [I ... U W t , where the W. are K-varieties. Each W. is 
1 1 
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defined by finitely many equations. The coefficients of all these 

equations for WI,.o.,W t generate a finite extension Fq~ of Fq 

So each W.I is a Fq~-Variety and is as such an absolute variety, 

and d.l = dim W.I ~ d - 1 . Let N~ (W.)l be the number of points in 

W.l with coordinates in FqX~ �9 By our induction hypothesis, applied 

to Fq~ instead of F , we see that as the integer k tends to m , 
q 

we have 

N)~ (Wi) = qk~(di-i ) +0(qk~(di-3/2)) 

= O(qk~ (d-l)) 

Nk (W)= Okq k~(d-l)]/~ as I -~ ~ Given ~, pick an integer ~ Thus 

with (~ -i)~ < ~ ~ k~ . Then as ~ -* ~ , 

N (W)~ % (W)= O(q )~(d-l)) 

= 0(q~(d-l) + ~(d-l)) 

= O(q'~(d-l)) . 

The proof of Theorem 7A is now completed as follows. According 

to Theorem 4D, the variety V is birationally equivalent to a hyper- 

surface S , and this hypersurface is an absolute variety by the 

remark at the end of w By Theorem 4A, there exist proper algebraic 

subsets L ~ V , M ~ S , such that the birational correspondence 

r between V and S becomes a 1 - 1 correspondence between points 

of V ~ L and of S ~ M o Now ~ as well as its inverse is defined 
= 

over k = F , i.e. is defined in terms of rational functions with 
q 

coefficients in F Thus in this correspondence, points with 
q 

components in F correspond to points with components in F 
q q 
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More generally, points with components in F M correspond to points 
q 

with components in Hence Fq~ ~ 

(7.3) 1 < (v) - % (s) l < (L) § % 

However, L and M are composed of varieties of dimension < d . 

So by  Lemma 7C, N (L) + N (M) = O ( q  ~ ( d - 1 ) )  On t h e  o t h e r  h a n d ,  by  

~d (q~(d - I/2)) 
Lemma 7B~ Ny(S) = q + O These relations in conjunc- 

tion with (7.3) yield (7.1). 

REMARKS~ (i) Theorem 7A together with Theorem 2D shows that the 

t+l 
number N of solutions (x, YI''~ E Fq~ of certain systems of 

equations 

d I d 2 d t 
Yl = gl (x) ' Y2 = g2(x'Yl) ''~176 Yt = gt (x' YI''''' Yt ) 

q~/2 
satisfies N = q + O( ) as ~ -~ 

M 

for certain systems of equations 

In particular this holds 

d I d t 
Yl = gl(x)'''~ Yt = gt(x) 

But a better result for such systems was already derived in Theorem 5A 

of Chapter II. Under suitable conditions on gl(X),~ ) it was 

1 - q~l < cq ~/2 where c was a constant explicitly shown  t h a t  N = , 

d e t e r m i n e d  i n  t e r m s  o f  t and  t h e  ~ d e g r e e s  o f  t h e  p o l y n o m i a l s  

gl,~176 

(ii) More generally, if V is an absolute variety defined over 

F determined by equations fl(x) ..... f~(x) = 0 then our 
q ~ ~ 

Theorem 7A could be strengthened to 

I N  - q'0d / ~ cq  "~(d - 1 / 2 )  , 
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where c is a constant depending only on the number n of variables, 

on ~ , and on the total degrees of the polynomials fl,..o,ft o 

(iii) Corollary 2B of Chapter V can be generalized as follows. 

Suppose V is an absolute variety of dimension d over ~ defined 

by equations fl(x) ..... f~(x) = 0 , where fl(X),...,fs have 

rational integer coefficients. Let ~. (X) be obtained from f. (X) 
i -- 1 = 

by reduction modulo p and let V 
P 

F by fl(x) ..... (x) = 0 0 

absolute variety of dimension d 0 

and the degrees of the polynomials 

then the number N(p) 

be the algebraic set defined over 

Then if p > Po ' the set Vp is an 

Here Po depends only on n , 

fl,.o.,f~ o Hence if p > Po ' 

of solutions of the system of congruences 

fl (x) =- .o. =- f~(x) -= 0 (mod p) 

satisfies iN(p)_pdl <= cpd - 1 / 2  

(iv) The Well (1949) conjectures (see also Ch. IV, w imply 

much better estimates than Theorem 7A if V is a "non-singular" variety 

of dimension d > 1 These conjectures Were recently proved by 

Deligne 

+)But see the remark in the Preface. 


