VI. Rudiments of Algebraic Geometry. The Number of Points in Varieties over Finite Fields.

General References: Artin (1955), Lang (1958), Shafarevich (1974), Mumford ().

§1. Varieties.

(iii) Every non-empty set of ideals in this ring which is partially ordered by set inclusion, has at least one maximal element.

Statement (i) is the <u>Hilbert Basis Theorem</u> (Hilbert 1888). It is well known that the three conditions (i), (ii), (iii) for a ring R are equivalent. A ring satisfying these conditions is called <u>Noetherian</u>. A proof of this Theorem may be found in books on algebra, e.g. Van der Waerden (1955), Kap. 12 or Zariski-Samuel (1958), Ch. IV, and will not be given here.

If k , K are fields such that $k \subseteq K$, the <u>transcendence degree</u> of K over k , written tr. deg. K/k , is the maximum number of elements in K which are algebraically independent over k .

In what follows, k, Ω will be fields such that $k \subseteq \Omega$, the tr. deg $\Omega/k = \infty$, and Ω is algebraically closed. We call k the ground field, and Ω the universal domain. For example, we may take k = Q (the rationals), $\Omega = C$ (the complex numbers). Or $k = F_q$, the finite field of a q elements, $\Omega = \overline{F_q(X_1, X_2, \ldots)}$, i.e. the algebraic closure of $F_q(X_1, X_2, \ldots)$.

Consider Ω^n , the space of n-tuples of elements in Ω . Suppose \Im is an ideal in $k[x_1, \ldots, x_n] = k[\underline{x}]$. Let $A(\mathfrak{F})$ be the set of $\underline{x} = (x_1, \ldots, x_n) \in \Omega^n$ having $f(\underline{x}) = 0$ for every $f(\underline{x}) \in \Im$. Every set $A(\mathfrak{F})$ so obtained is called an <u>algebraic set</u>. More precisely, it is a k-algebraic set. If we have such an ideal \Im , then by Theorem 1A, there exists a basis of \Im consisting of a finite number of polynomials, say $f_1(\underline{x}), \ldots, f_m(\underline{x})$. Therefore $A(\mathfrak{F})$ can also be characterized as the set of $\underline{x} \in \Omega^n$ with $f_1(\underline{x}) = \ldots = f_m(\underline{x}) = 0$. Note that if $\Im_1 \subseteq \Im_2$, then $A(\mathfrak{G}_1) \supseteq A(\mathfrak{G}_2)$.

Examples: (1) Let k = Q, $\Omega = C$, n = 2, and \Im the ideal generated by $f(X_1, X_2) = X_1^2 + X_2^2 - 1$. Then A(3) is the unit circle.

(2) Again let k = Q, $\Omega = C$, n = 2, and take \Im to be the ideal generated by $f(X_1, X_2) = X_1^2 - X_2^2$. Then A(3) consists of the two intersecting lines $x_2 = x_1$, $x_2 = -x_1$.

THEOREM 1B. (i) The empty set ϕ and Ω^n are algebraic sets. (ii) <u>A finite union of algebraic sets is an algebraic set</u>.

(iii) <u>An intersection of an arbitrary number of algebraic sets is</u> an algebraic set.

<u>Proof</u>: (i) If $\Im = k[X_1, \dots, X_n]$, then $A(\Im) = \phi$. If $\Im = (0)$, $\not \models \phi$. the principal ideal generated by the zero polynomial, then $A(\Im) = \Omega^n$.

(ii) It is sufficient to show that the union of two algebraic sets is again an algebraic set. Suppose A is the algebraic set given by

the equations $f_1(\underline{x}) = \dots = f_{\ell}(\underline{x}) = 0$, B is the algebraic set given by the equations $g_1(\underline{x}) = \dots = g_m(\underline{x}) = 0$. Then $A \cup B$ is the set of $\underline{x} \in \Omega^n$ with $f_1(\underline{x}) = g_1(\underline{x}) = f_1(\underline{x}) = g_2(\underline{x}) = \dots = f_{\ell}(\underline{x}) = g_m(\underline{x}) = 0$.

(iii) Let A_{α} , $\alpha \in I$, where I is any indexing set, be a collection of algebraic sets. Suppose that $A_{\alpha} = A(\mathfrak{T}_{\alpha})$, where \mathfrak{T}_{α} is an ideal in $k[\underline{x}]$. We claim that

(1.1)
$$\bigcap_{\alpha \in \mathbf{I}} A(\mathfrak{Z}_{\alpha}) = A\left(\sum_{\alpha \in \mathbf{I}} \mathfrak{Z}_{\alpha}\right),$$

where $\sum_{\alpha \in I} \mathfrak{Z}_{\alpha}$ is the ideal consisting of sums $f_1(\underline{x}) + \ldots + f_{\ell}(\underline{x})$ with each $f_1(\underline{x})$ in \mathfrak{Z}_{α} for some $\alpha \in I$. To prove (1.1), suppose that $\underline{x} \in \bigcap A(\mathfrak{Z}_{\alpha})$. Then for each $\alpha \in I$, $\underline{x} \in A(\mathfrak{Z}_{\alpha})$, whence $f(\underline{x}) = 0$ if $f \in \mathfrak{Z}_{\alpha}$. Therefore $f(\underline{x}) = 0$ if $f \in \sum \mathfrak{Z}_{\alpha}$. Hence $\underline{x} \in A(\sum_{\alpha \in I} \mathfrak{Z}_{\alpha})$. Conversely, if $\underline{x} \in A(\sum_{\alpha \in I} \mathfrak{Z}_{\alpha})$, then $f(\underline{x}) = 0$ if $\alpha \in I$ $f \in \sum \mathfrak{Z}_{\alpha}$. So for any $\alpha \in I$, if $f \in \mathfrak{Z}_{\alpha}$, then $f(\underline{x}) = 0$. Thus, $\alpha \in I$ $\underline{x} \in A(\mathfrak{Z}_{\alpha})$ for all α , or $\underline{x} \in \bigcap A(\mathfrak{Z}_{\alpha})$. This proves (1.1). It $\alpha \in I$ follows that $\bigcap A_{\alpha} = \bigcap A(\mathfrak{Z}_{\alpha})$ is an algebraic set.

In Ω^n we can now introduce a topology by defining the <u>closed sets</u> as the algebraic sets. This topology is called the <u>Zariski Topology</u>. As usual, the <u>closure</u> of a set M is the intersection of the closed sets containing M. It is the smallest closed set containing M and is denoted by \overline{M} .

Let M be a subset of Ω^n . We write $\Im(M)$ for the ideal of all polynomials f(X) which vanish on M, i.e., all polynomials f(X)

such that f(x) = 0 for every $x \in M$. It is clear that if $M_1 \subseteq M_2$, then $\Im(M_1) \supseteq \Im(M_2)$.

```
THEOREM 1C. \overline{M} = A(\Im(M)).
```

<u>Proof</u>: Clearly $A(\Im(M))$ is a closed set containing M. Therefore it is sufficient to show that $A(\Im(M))$ is the <u>smallest</u> closed set containing M. Let T be a closed set containing M; say $T = A(\Im)$. Since $T \cong M$, it follows that $\Im \subseteq \Im(T) \subseteq \Im(M)$, so that

$$T = A(\mathfrak{Z}) \cong A(\mathfrak{Z}(M))$$

<u>Remark</u>: If S is an algebraic set, then it follows from Theorem 1C that S = A (G(S)).

If \mathfrak{A} is an ideal, define the <u>radical</u> of \mathfrak{A} , written $\sqrt{\mathfrak{A}}$, to consist of all $f(\underline{X})$ such that for some positive integer m, $f^{\mathfrak{m}}(\underline{X}) \in \mathfrak{A}$. The radical of \mathfrak{A} is again an ideal. For if $f(\underline{X})$, $g(\underline{X}) \in \sqrt{\mathfrak{A}}$, then there exist positive integer m, ℓ such that $f^{\mathfrak{m}}(\underline{X})$, $g^{\ell}(\underline{X}) \in \mathfrak{A}$. Thus by the Binomial Theorem, $(f(\underline{X}) \pm g(\underline{X}))^{\mathfrak{m}+\ell} \in \mathfrak{A}$, so that $f(\underline{X}) \pm g(\underline{X}) \in \sqrt{\mathfrak{A}}$. Also, for any $h(\underline{X})$ in $k[\underline{X}]$, $(h(\underline{X}) f(\underline{X}))^{\mathfrak{m}} \in \mathfrak{A}$, so that $h(\underline{X}) f(\underline{X}) \in \sqrt{\mathfrak{A}}$.

If \mathfrak{P} is a prime ideal, then $\sqrt{\mathfrak{P}} = \mathfrak{P}$, since if $f(\underline{x}) \in \sqrt{\mathfrak{P}}$, then $f^{\mathfrak{m}}(\underline{x}) \in \mathfrak{P}$, which implies that $f(\underline{x}) \in \mathfrak{P}$.

THEOREM 1D. Let \mathfrak{A} be an ideal in k[X]. Then

Example: Let k = Q, $\Omega = C$, n = 2, and \mathcal{U} the principal ideal generated by $f(X_1, X_2) = (X_1^2 + X_2^2 - 1)^3$. Then $A(\mathcal{U})$ is the unit circle, and $\Im(A(\mathcal{U})) = (X_1^2 + X_2^2 - 1)$. Thus $\sqrt{\mathcal{U}} = (X_1^2 + X_2^2 - 1)$, the ideal generated by $X_1^2 + X_2^2 - 1$.

Before proving Theorem 1D we need two lemmas.

<u>LEMMA IE</u>. Given a prime ideal $\mathfrak{B} \neq k[\underline{x}]$, there exists an $\underline{x} \in \Omega^n$ with $\mathfrak{I}(\underline{x}) = \mathfrak{B}$.

<u>Proof</u>. Form the natural homomorphism from $k[\underset{=}{x}]$ to the quotient ring $k[\underset{=}{x}]/\mathfrak{P}$. Since $\mathfrak{P} \cap k = \{0\}$, the natural homomorphism is an isomorphism on k. Thus we may consider $k[\underset{=}{x}]/\mathfrak{P}$ as an extension of k, and the natural homomorphism restricted to k becomes the identity map. Thus our homomorphism is a k-homomorphism. Let the image of x_i be ξ_i (i = 1, ..., n). The natural homomorphism is then α homomorphism from $k[x_1, ..., x_n]$ onto $k[\xi_1, ..., \xi_n]$ with kernel \mathfrak{P} . Since \mathfrak{P} was a prime ideal, $k[\xi_1, ..., \xi_n]$ is an integral domain.

Try to replace ξ_i by $x_i \in \Omega$. If, say, ξ_1, \dots, ξ_d are algebraically independent over k with ξ_{d+1}, \dots, ξ_n algebraically dependent on them, choose $x_1, \dots, x_d \in \Omega$ algebraically independent over k. Then $k(\xi_1, \dots, \xi_d)$ is k-isomorphic to $k(x_1, \dots, x_d)$. Also, ξ_{d+1} is algebraic over $k(\xi_1, \dots, \xi_d)$, and so satisfies a certain irreducible equation with coefficients in $k(\xi_1, \dots, \xi_d)$. Choose x_{d+1} in Ω such that it satisfies the corresponding equation as ξ_{d+1} but with coefficients in $k(x_1, \dots, x_d)$. Then $k(\xi_1, \dots, \xi_{d+1})$ is k-isomorphic to $k(x_1, \dots, x_{d+1})$. There is a k-isomorphism with $\xi_i \rightarrow x_i$ (i = 1, ..., d+1).

Continuing in this manner, we can find $x_1, \ldots, x_n \in \Omega$ such that $k(\xi_1, \ldots, \xi_n)$ is k-isomorphic to $k(x_1, \ldots, x_n)$. There is an isomorphism α with $\alpha(\xi_1) = x_1$ (i = 1, ..., n).

Composing the natural homomorphism with the isomorphism $\,\alpha\,$ we obtain a homomorphism

$$\varphi: k[x_1, \dots, x_n] \to k[x_1, \dots, x_n]$$

with kernel \mathfrak{P} . Write $x = (x_1, \dots, x_n)$.

Now $\Im(\underline{x}) = \Im$, for $f(\underline{x}) = 0$ precisely if $\phi(f(\underline{x})) = 0$, which is true if $f(\underline{x}) \in \Im$.

LEMMA 1F. Let \mathbb{C} be a non-empty subset of $k[\underline{x}]$ which is closed under multiplication and doesn't contain zero. Let \mathbb{P} be an ideal which is maximal with respect to the property that $\mathfrak{P} \cap \mathfrak{C} = \phi$. Then \mathfrak{P} is a prime ideal.

<u>Proof</u>: Suppose $f(\underline{x}) \in \mathbb{R}$ but that $f(\underline{x})$ and $g(\underline{x})$ are not in \mathfrak{P} . Let $\mathfrak{A} = (\mathfrak{P}, f(\underline{x}))^*$, so that \mathfrak{A} properly contains \mathfrak{P} . Since \mathfrak{P} is maximal with respect to the property that $\mathfrak{P} \cap \mathfrak{C} = \phi$, it follows that $\mathfrak{A} \cap \mathfrak{C} \neq \phi$. So there exists a $c(\underline{x}) = p(\underline{x}) + h(\underline{x}) f(\underline{x})$, where $c(\underline{x}) \in \mathfrak{C}$, $p(\underline{x}) \in \mathfrak{P}$, $h(\underline{x}) \in k[\underline{x}]$. Similarly, there exists a $c'(\underline{x}) = p'(\underline{x}) + h'(\underline{x}) g(\underline{x})$, where $c'(x) \in \mathfrak{C}$, $p'(\underline{x}) \in \mathfrak{P}$, $h'(\underline{x}) \in k[\underline{x}]$. Then

$$\mathbf{c'}(\underline{X}) \mathbf{c}(\underline{X}) = (\mathbf{p'}(\underline{X}) + \mathbf{h'}(\underline{X}) \mathbf{g}(\underline{X}))(\mathbf{p}(\underline{X}) + \mathbf{h}(\underline{X}) \mathbf{f}(\underline{X})) \in \mathfrak{P}$$

However, since \mathbb{S} is closed under multiplication, $c'(\underline{x}) c(\underline{x}) \in \mathbb{S}$, contradicting the hypothesis that $\mathfrak{P} \cap \mathbb{S} = \phi$.

<u>Proof of Theorem 1D</u>: Suppose $f \in \sqrt{\mathfrak{A}}$, so that there exists a positive integer m with $f^{\mathfrak{m}} \in \mathfrak{A}$. Thus for every $\underline{x} \in A(\mathfrak{A})$, $f^{\mathfrak{m}}(\underline{x}) = 0$. Hence $f(\underline{x}) = 0$ for every $\underline{x} \in A(\mathfrak{A})$. Therefore $f(\underline{x}) \in \mathfrak{J}(A(\mathfrak{A}))$, and $\sqrt{\mathfrak{A}} \subseteq \mathfrak{J}(A(\mathfrak{A}))$.

Suppose $f \notin \sqrt{\mathfrak{A}}$. If \mathfrak{C} is the set of all positive integer powers of f, then $\mathfrak{C} \cap \mathfrak{A} = \phi$; also \mathfrak{C} does not contain zero. Let \mathfrak{P} be an ideal containing \mathfrak{A} which is maximal[†] with respect to the property that $\mathfrak{C} \cap \mathfrak{P} = \phi$. By Lemma 1F, \mathfrak{P} is a prime ideal. By Lemma 1E, there exists a point $\underline{x} \in \Omega^n$ such that $\mathfrak{B} = \mathfrak{Z}(\underline{x})$. Since $f \notin \mathfrak{P}$, $f(\underline{x}) \neq 0$. Also, $(\overline{\underline{x}}) = A(\mathfrak{Z}(\underline{x})) = A(\mathfrak{P}) \subseteq A(\mathfrak{A})$, so that $\underline{x} \in A(\mathfrak{A})$. It follows that $f \notin \mathfrak{Z}(A(\mathfrak{A}))$. Thus $\mathfrak{Z}(A(\mathfrak{A})) \subseteq \sqrt{\mathfrak{A}}$.

^{†)} The existence of such an ideal is guaranteed by Theorem 1A. * the ideal generated by γ and $f(\underline{X})$. Suppose S is an algebraic set. We call S <u>reducible</u> if $S = S_1 \cup S_2$, where S_1, S_2 are algebraic sets, and $S \neq S_1, S_2$. Otherwise, we call S irreducible.

Example: Let k = Q, K = C, n = 2, and let 3 be the ideal generated in $k[x_1, x_2]$ by the polynomial $f(x_1, x_2) = x_1^2 - x_2^2$. Then S = AG is the set of all $\underline{x} \in C^2$ such that $x_1^2 - x_2^2 = 0$. If S_1 is the set of all $\underline{x} \in C^2$ with $x_1 + x_2 = 0$, and S_2 is the set of all $\underline{x} \in C^2$ with $x_1 - x_2 = 0$, then $S = S_1 \cup S_2$, and $S_1 \neq S \neq S_2$. Hence S is reducible.

THEOREM 1G. Let S be a non-empty algebraic set. The following four conditions are equivalent:

- (i) $S = (\overline{x})$, i.e. S is the closure of a single point \underline{x} ,
- (ii) S is irreducible,
- (iii) $\Im(S)$ is a prime ideal in k[X],
- (iv) S = A(B), where B is a prime ideal in k[X].

<u>Proof</u>: (i) \Rightarrow (ii), Suppose $S = A \cup B$, where A and B are algebraic sets, and $A \neq S \neq B$. We have $\underline{x} \in S = A \cup B$. We may suppose that, say, $\underline{x} \in A$. Then $S = (\overline{x}) \subseteq \overline{A} = A$, whence S = A, which is a contradiction.

(ii) \Rightarrow (iii), Suppose that $\Im(S)$ is not prime. Then we would have $f(\underline{X}) g(\underline{X}) \in \Im(S)$ with neither $f(\underline{X})$ nor $g(\underline{X})$ in $\Im(S)$. Let $\mathfrak{A} = \Im(S), f(\underline{X})$ (i.e. the ideal generated by $\Im(S)$ and $f(\underline{X})$). Let $\mathfrak{B} = \Im(S), g(\underline{X})$). Let $A = A(\mathfrak{A})$, $B = A(\mathfrak{B})$. In view of $S = A(\Im(S))$ and $\mathfrak{A} \supseteq \Im(S)$, we have $A \subseteq S$. But $A \neq S$ since $f \in \Im(A)$ and $f \notin \Im(S)$. Thus $A \not\subseteq S$. Similarly, $B \not\subseteq S$. But we claim that $S = A \cup B$. Clearly $A \cup B \subseteq S$. On the other hand, if $\underline{x} \in S$, then $f(\underline{x}) g(\underline{x}) = 0$. Without loss of generality, let us assume that $f(\underline{x}) = 0$. Then \underline{x} is a zero of every polynomial of \mathfrak{A} , so that $\underline{x} \in A$. Therefore $S \subseteq A \cup B$. Thus $S = A \cup B$, with $A \neq S \neq B$. This contradicts the irreducibility of S.

(iii) \Rightarrow (iv), Set $\mathfrak{P} = \mathfrak{J}(S)$. Then $S = A(\mathfrak{J}(S)) \Rightarrow A(\mathfrak{B})$.

 $(iv) \Rightarrow (i)$. Choose $\underset{=}{x}$ according to Lemma 1E with $\Im(\underset{=}{x}) = \mathfrak{P}$. Then $S = A(\mathfrak{P}) = A(\Im(\underset{=}{x})) = (\overline{x})$. The proof of Theorem 1G is complete.

A set S satisfying any one of the four equivalent properties of Theorem 1G is called a <u>variety</u>. (More precisely, it is a k-variety.) If V is a variety, $\underline{x} \in V$ is called a <u>generic point</u> of V if $V = (\overline{x})$.

<u>COROLLARY 1H</u>. There is a one to one correspondence between the collection of all k-varieties V in Ω^n and the collection of all prime ideals $\mathfrak{P} \neq k[\underline{X}]$ in $k[\underline{X}]$, given by

$$v \stackrel{\alpha}{\rightarrow} \mathfrak{P} = \mathfrak{Z}(V) \text{ and } \mathfrak{P} \stackrel{\beta}{\rightarrow} V = A(\mathfrak{P})$$
.

Proof: Let V be a variety in Ω^n ; then $V \xrightarrow{\alpha} \Im(V) \xrightarrow{\beta} A(\Im(V)) = V$. Also, if \mathfrak{P} is a prime ideal in $k[\underline{x}]$, then $\mathfrak{P} \xrightarrow{\beta} A(\mathfrak{P}) \xrightarrow{\alpha} \Im(A(\mathfrak{P})) = \sqrt{\mathfrak{P}} = \mathfrak{P}$

Examples: (1) Let $S = \Omega^n$. Now $\Im(\Omega^n) = (0)$, a prime ideal. Suppose $\underline{x} = (x_1, \dots, x_n)$ is of transcendence degree n, i.e. the n coordinates are algebraically independent over k. Then $\Im(\underline{x}) = (0)$, so $(\overline{\underline{x}}) = A(\Im(\underline{x})) = A((0)) = \Omega^n$. So any point of Ω^n of transcendence degree n over k is a generic point of Ω^n .

(2) Let $k = \mathbf{Q}$, $\Omega = \mathbf{C}$, n = 2. Let \mathfrak{P} be the principal ideal generated by $f(X_1, X_2) = X_1^2 + X_2^2 - 1$. \mathfrak{P} is a prime ideal since f is irreducible. Thus $A(\mathfrak{P})$, i.e. the unit circle, is a variety. Choose $x_1 \in \Omega$ and transcendental over \mathbf{Q} . Pick $x_2 \in \Omega$ with $x_2^2 = 1 - x_1^2$. Then the point $\underline{x} = (x_1, x_2)$ belongs to $A(\mathfrak{P})$. In fact, \underline{x} is a generic point of $A(\mathfrak{P})$:

To see this, it will suffice to show that $\Im(\underline{x}) = (X_1^2 + X_2^2 - 1)$, i.e. the principal ideal generated by $X_1^2 + X_2^2 - 1$. If $g(X_1, X_2) \in \Im(\underline{x})$, that is, if $g(x_1, x_2) = 0$, then $g(x_1, x_2)$ is a multiple of $X_2^2 - 1 + x_1^2$, since x_2 is a root of $X_2^2 - 1 + x_1^2$, which is irreducible over $Q(x_1)$. More precisely,

$$g(x_1, X_2) = (X_2^2 - 1 + x_1^2) h(x_1, X_2)$$

where $h(X_1, X_2)$ is a polynomial in X_2 and is rational in X_1 . Since x_1 was transcendental, we get

$$g(X_1, X_2) = (X_1^2 + X_2^2 - 1) h(X_1, X_2)$$

In view of the unique factorization in $\mathbf{Q}[x_1]$, it follows that $\mathbf{h}(x_1, x_2)$ is in fact a polynomial in x_1, x_2 . Thus $\Im(\mathbf{x}) = (x_1^2 + x_2^2 - 1)$.

(3) Let k = Q, $\Omega = C$, n = 2. Let \mathcal{P} be the principal ideal generated by $f(X_1, X_2) = X_1^2 - X_2$. Then $A(\mathcal{P})$ is irreducible and is a parabola. Choose $x_1 \in \Omega$ and transcendental over Q, and put $x_2 = x_1^2$. Then $x = (x_1, x_2)$ lies in $A(\mathcal{P})$. An argument similar to

the one given in (2) shows that $\underset{=}{x}$ is a generic point of A(P). For example, Lindemann's Theorem says that e is transcental over Q, and therefore (e,e²) is a generic point of A(P).

(4) Let $k = \mathbb{Q}$, $\Omega = \mathbb{C}$. Let \mathfrak{A} be the principal ideal $\mathfrak{A} = (x_1^2 - x_2^2)$. Then as we have seen above, A(\mathfrak{A}) is reducible and is therefore not a variety.

(5) Consider a linear manifold M^{d} given by a parameter representation

$$x_i = b_i + a_{i1}t_1 + \dots + a_{id}t_d$$
 $(1 \le i \le n)$.

Here the b_i and the a_{ij} as given elements of k, with the $(d \times n) - matrix (a_{ij})$ of rank d. As t_1, \ldots, t_d run through Ω , $\underline{x} = (x_1, \ldots, x_n)$ runs through M^d . It follows from linear algebra that M^d is an algebraic set. (It is a "d-dimensional linear manifold". See also §2 about the notion of dimension). In fact M^d is a variety:

Choose $\ensuremath{\mathbb{N}}_1,\ldots,\ensuremath{\mathbb{N}}_d$ algebraically independent over k . Put

$$\xi_{i} = b_{i} + a_{i1} \eta_{1} + \dots + a_{id} \eta_{d} \quad (1 \le i \le n)$$

and $\underline{\xi} = (\xi_1, \xi_2, \dots, \xi_n) \in \Omega^n$. Now $\underline{\xi} \in \underline{M}^d$, so $(\underline{\xi}) \subseteq \underline{M}^d$. Conversely, if $f(\underline{\xi}) \approx 0$, then

$$f(b_{1} + a_{11}T_{1} + \cdots + a_{1d}T_{d},$$

$$b_{2} + a_{21}T_{1} + \cdots + a_{2d}T_{d}, \dots, b_{n} + a_{n1}T_{1} + \cdots + a_{nd}T_{d} = 0,$$

where T_1, \ldots, T_d are variables. Thus if $\underline{x} \in M^d$, then $f(\underline{x}) = 0$. So every $\underline{x} \in M^d$ lies in $A(\Im(\underline{\xi})) = (\underline{\xi})$. Therefore we have shown that $M^d = (\underline{\xi})$, or that M^d is a variety. (6) Take $k = \mathbb{Q}$, $\Omega = \mathbb{C}$, n = 2, and \mathfrak{A} the principal ideal generated by $f(X_1, X_2) = X_1^2 - 2X_2^2$. Over $k = \mathbb{Q}$, this polynomial is irreducible. Thus \mathfrak{A} is a prime ideal, and $A(\mathfrak{A})$ is a variety. However, if we take $k' = \mathbb{Q}(\sqrt{2})$, then $f(X_1, X_2)$ is no longer irreducible over k', so that \mathfrak{A} is no longer a prime ideal in $k'[X_1, X_2]$, and $A(\mathfrak{A})$ is no longer a variety.

This prompts the definition: A variety is called an <u>absolute</u> variety if it remains a variety over every algebraic extension of k.

THEOREM 11. Every non-empty algebraic set is a finite union of varieties.

<u>Proof</u>: We first show that every non-empty collection \mathfrak{S} of algebraic sets has a minimal element. For if we form all ideals $\mathfrak{J}(S)$, where $S \in \mathfrak{S}$, there is by Theorem 1A a maximal element of this nonempty collection of ideals. Say $\mathfrak{J}(S_0)$ is maximal. We claim that $S_0 \in \mathfrak{K}$ is minimal. For if $S_1 \subseteq S_0$ where $S_1 \in \mathfrak{S}$, then $\mathfrak{J}(S_1) \supseteq \mathfrak{J}(S_0)$; but since $\mathfrak{J}(S_0)$ is maximal, $\mathfrak{J}(S_1) = \mathfrak{J}(S_0)$. Thus $S_1 = A(\mathfrak{J}(S_1))$ $= A(\mathfrak{J}(S_0)) = S_0$.

Suppose that Theorem II is false. Let \mathbb{S} be the collection of algebraic sets for which Theorem II is false. There is a minimal element S_0 of \mathbb{S} . If S_0 were a variety, then the theorem would be true for S_0 . Hence S_0 is reducible. Let $S_0 = A \cup B$, where A,B are algebraic sets, with $A \neq S_0 \neq B$. Since S_0 is minimal and $A \subsetneqq S_0$, $B \gneqq S_0$, the theorem is true for A,B. Hence, we can write $A = V_1 \cup \ldots \cup V_m$, and $B = W_1 \cup \ldots \cup W_k$, where $V_i (1 \le i \le m)$ and $W_i (1 \le j \le k)$ are varieties. Thus

$$\mathbf{S}_{\mathbf{0}} = \mathbf{A} \cup \mathbf{B} = \mathbf{V}_{\mathbf{1}} \cup \ldots \cup \mathbf{V}_{\mathbf{m}} \cup \mathbf{W}_{\mathbf{1}} \cup \ldots \cup \mathbf{W}_{\mathbf{\ell}}$$

contradicting our hypothesis that $\begin{smallmatrix} s_0 \in {\tt C} \\ 0 \end{smallmatrix}$.

It is clear that there exists a representation of S as $S = V_1 \cup \ldots \cup V_t$ where $V_i \notin V_j$ if $i \neq j$.

THEOREM 1J. Let S be a non-empty algebraic set. The representation of S as

$$s = v_1 \cup \ldots \cup v_t$$
,

where V_1, \ldots, V_t are varieties with $V_i \stackrel{d}{=} V_j$ if $i \neq j$, is unique.

Proof: Exercise.

The V_i in the unique representation of S given in Theorem 1J are called the components of S.

Example: Let $k = \mathbf{Q}$, $\Omega = \mathbf{C}$, n = 2, and $S = A((X_1^2 - X_2^2))$. Let $V_1 = A((X_1 - X_2))$ and $V_2 = A((X_1 + X_2))$; then $S = V_1 \cup V_2$. Here V_1, V_2 are two intersecting lines.

Finally we introduce the following terminology and notation. We say \underline{y} is a specialization of \underline{x} and write

if $\underline{y} \in (\overline{\underline{x}})$. This holds precisely if $f(\underline{y}) = 0$ for every $f(\underline{x}) \in k[\underline{x}]$ with $f(\underline{x}) = 0$. It is immediately seen that \rightarrow is transitive, i.e. that

 $\underbrace{x}_{\underline{z}} \rightarrow \underbrace{y}_{\underline{z}} \text{ and } \underbrace{y}_{\underline{z}} \rightarrow \underbrace{z}_{\underline{z}} \text{ implies that } \underbrace{x}_{\underline{z}} \rightarrow \underbrace{z}_{\underline{z}}.$

If both $\underset{=}{x} \rightarrow \underset{=}{y}$ and $\underset{=}{y} \rightarrow \underset{=}{x}$, then we write $\underset{=}{x} \leftrightarrow \underset{=}{y}$. This is equivalent

with the equation $(\overline{\underline{x}}) = (\overline{\underline{y}})$.

<u>Example</u>: Let $\underline{x} = (e, e^2)$ and $\underline{y} = (1, 1)$. Then $\underline{x} \rightarrow \underline{y}$. For as we saw in example (3) below Theorem 1G, the point \underline{x} is a generic point of the parabola $x_2 - x_1^2 = 0$, and \underline{y} lies on this parabola.

§2. Dimension.

Let $\underline{x} \in \Omega^n$. The transcendence degree of \underline{x} over k is the maximum number of algebraically independent components of \underline{x} over k. This clearly is equal to the transcendence degree of $k(\underline{x})$ over k. We have

$$0 \le tr. deg. x \le n$$
.

THEOREM 2A. Suppose $x \rightarrow y$. Then

(i) <u>tr. deg.</u> $\underline{y} \leq \underline{tr}$. <u>deg.</u> \underline{x} .

(ii) Equality hold in (i) if and only if $x \leftrightarrow y$.

<u>Proof</u>: (i) Induction on n. If n = 1, and if trans. deg. $\underline{x} = 1$, then tr. deg. $\underline{y} \le n = 1 = \text{trans. deg } \underline{x}$; if tr. deg. $\underline{x} = 0$, then \underline{x} is algebraic over k. In this case, since $\underline{x} \rightarrow \underline{y}$, the components of \underline{y} satisfy the algebraic equations satisfied by the components of \underline{x} , and tr. deg. $\underline{y} = 0$.

To show the induction step, let d be the transcendence degree of $\underset{=}{x}$. We may assume that d < n. We may also assume that tr. deg. $\underbrace{y} \geq d$. Without loss of generality, we assume that y_1, \ldots, y_d are algebraically independent over k. Since $\underset{=}{x} = (x_1, \ldots, x_n) \rightarrow (y_1, \ldots, y_n) = \underbrace{y}_{=}$, it follows that $(x_1, \ldots, x_d) \rightarrow (y_1, \ldots, y_d)$. By induction, and since d < n, the elements x_1, \ldots, x_d are also algebraically independent over k. Let $d < i \le n$. Then x_i is algebraically dependent on x_1, \ldots, x_d . So x_i satisfies some non-trivial equation

$$x_{i}^{a} g_{a}(x_{1},...,x_{d}) + x_{i}^{a-1} g_{a-1}(x_{1},...,x_{d}) + ... + g_{0}(x_{1},...,x_{d}) = 0$$

Since $\underline{x} \rightarrow \underline{y}$, it follows that

$$y_i^a g_a(y_1, \dots, y_d) + y_i^{a-1} g_a(y_1, \dots, y_d) + \dots + g_0(y_1, \dots, y_d) = 0$$
.

Thus y_i is algebraically dependent on y_1, \ldots, y_d . This is true for any i in $d \le i \le n$. So tr. deg. $\underline{y} \le d$.

(ii) If $x \leftrightarrow y$, then it follows from part (i) that tr. deg. x = tr. deg. y.

Suppose $\underline{x} \rightarrow \underline{y}$ and tr. deg. $\underline{x} = \text{tr. deg. } \underline{y}$. Let the common transcendence degree be d. We may assume without loss of generality that the first d coordinates y_1, \ldots, y_d are algebraically independent over k. Then by part (i) and by $(x_1, \ldots, x_d) \rightarrow (y_1, \ldots, y_d)$, also x_1, \ldots, x_d are algebraically independent over k. We have to show that $\underline{y} \rightarrow \underline{x}$, i.e. that if $f(\underline{y}) = 0$ for $f \in k[\underline{x}]$, then $f(\underline{x}) = 0$. Put differently, we have to show that if $f(\underline{x}) \neq 0$, then $f(\underline{y}) \neq 0$. So let $f(\underline{x}) \neq 0$. Then $f(\underline{x})$ is a non-zero element of $k(\underline{x})$ and $1/f(\underline{x}) \in k(\underline{x})$. Now since x_{d+1}, \ldots, x_n are algebraic over $k(x_1, \ldots, x_d)$, it is well known that

 $k(\mathbf{x}) = k(\mathbf{x}_1, \dots, \mathbf{x}_d) [\mathbf{x}_{d+1}, \dots, \mathbf{x}_n],$

i.e. k(x) = 0 is obtained from $k(x_1, \dots, x_d)$ by forming the polynomial ring in x_{d+1}, \dots, x_n .

Thus

$$1/f(x) = v(x_1, ..., x_n) / u(x_1, ..., x_d)$$

where $v(X_1, \ldots, X_n)$ and $u(X_1, \ldots, X_d)$ are polynomials. We have

$$u(x_1,\ldots,x_d) = f(x) \quad v(x)$$

which implies that

$$u(y_1, \ldots, y_d) = f(\underline{y}) v(\underline{y}),$$

in view of $\underline{x} \rightarrow \underline{y}$. Now y_1, \dots, y_d are independent over k, whence $u(y_1, \dots, y_d) \neq 0$, whence $f(\underline{y}) \neq 0$. Our proof is complete.

The dimension of a variety V is defined as the transcendence degree of any of its generic points. In view of Theorem 2A , there is no ambiguity. A variety of dimension 1 is called a <u>curve</u>, one of dimension n - 1 is called a hypersurface.

Example: Let us consider again the example of the linear manifold \mathbb{M}^d . We constructed a generic point (ξ_1, \ldots, ξ_n) with $k(\mathbb{M}_1, \ldots, \mathbb{M}_d)$ = $k(\xi_1, \ldots, \xi_n)$, where $\mathbb{M}_1, \ldots, \mathbb{M}_d$ were algebraically independent. Thus tr. deg. $k(\xi_1, \ldots, \xi_n) = d$. Hence in the sense of our definition, \mathbb{M}^d has dimension d. This agrees with the dimension d assigned to \mathbb{M}^d in linear algebra.

<u>THEOREM 2B.</u> (i) Let V be a variety and let $\underline{x} \in V$ with <u>tr. deg.</u> $\underline{x} = \dim V$. Then \underline{x} is a generic point of V.

(ii) If $W \subseteq V$ are two varieties, and if dim $W = \dim V$, then W = V.

230

<u>Proof</u>: (i) Let \underline{y} be a generic point of V. Then $\underline{y} \rightarrow \underline{x}$ and tr. deg. $\underline{x} = tr.$ deg. y. By Theorem 2A, $\underline{x} \leftrightarrow \underline{y}$, so that $(\overline{x}) = (\overline{y}) = V$.

(ii) Let \underline{x} be a generic point of W. Now $\underline{x} \in V$, and tr. deg. $\underline{x} = \dim V$, so that by part (i), \underline{x} is a generic point of V. Thus $(\overline{x}) = W = V$.

<u>THEOREM 2C.</u> (i) If $f(\underline{X}) \in k[\underline{X}]$ is a non-constant irreducible polynomial, then the set of zeros of $f(\underline{X})$ is a hypersurface; that is, a variety of dimension n - 1.

(ii) If S is a hypersurface, then $\Im(S)$ is a principal ideal (f), generated by some non-constant irreducible polynomial $f(\underline{x}) \in k[\underline{x}]$.

<u>Proof</u>: (i) The principal ideal (f) is a prime ideal in $k[\underline{x}]$, so A((f))is a variety. Without loss of generality, suppose X_n occurs in $f(\underline{x})$, say $f(\underline{x}) = X_n^a g_a(X_1, \dots, X_{n-1}) + \dots + g_0(X_1, \dots, X_{n-1})$. Choose $x_1, \dots, x_{n-1} \in \Omega$ algebraically independent over k. Choose $x_n \in \Omega$ with $f(x_1, \dots, x_n) = 0$. Then $\underline{x} = (x_1, \dots, x_n) \in A((f))$. Also, tr. deg. $\underline{x} = n - 1$. Thus dim $A((f)) \ge n - 1$. On the other hand, dim $A((f)) \ne n$, by Theorem 2B and since $A((f)) \ne \Omega^n$. Hence dim A((f)) = n - 1. In other words, A((f)) is a hypersurface.

(ii) If S is a hypersurface, then $\Im(S)$ is a prime ideal. Let $g(\underline{X}) \in \Im(S)$, $g \neq 0$. Since $\Im(S)$ is prime, there exists some irreducible factor f of g such that $f(\underline{X}) \in \Im(S)$. So $(f) \subseteq \Im(S)$, whence $A((f)) \supseteq A(\Im(S)) = S$. But dim A((f)) = n - 1 by part (i), and dim S = n - 1. Therefore by Theorem 2B, A(f) = S. Hence

 $\Im(S) = \Im(A(f)) = \sqrt{(f)} = (f)$,

since (f) is prime.

<u>Examples</u>: (1) Let k = Q, $\Omega = C$, n = 2 and $f(X,Y) = Y - X^2$. Now f is irreducible. So by Theorem 2C, the set of zeros of f is a hypersurface of dimension 1. Since n - 1 = 1, it is also a curve. The point (e,e²) has transcendence degree 1 and lies on our curve. Hence we see again that it is a generic point of our curve.

(2) Same as above, but with $f(X,Y) = X^2 + Y^2 - 1$. Again the set of zeros of f (namely the unit circle) is a hypersurface and also a curve.

Let t be transcendental and consider the point

$$x_{\pm} = (x_1, x_2) = \left(\frac{2t}{t^2+1}, \frac{t^2-1}{t^2+1}\right)$$

Here $t = \frac{x_1}{1-x_2}$, whence $k(\underline{x}) = k(t)$, so that \underline{x} has transcendence degree 1. Since \underline{x} lies on our curve, it follows that \underline{x} is a generic point of the unit circle. In particular,

$$\left(\frac{2e}{e^2+1} \quad , \quad \frac{e^2-1}{e^2+1}\right)$$

is a generic point of the unit circle.

<u>THEOREM 2D.</u> Let n = 1 + t, let $f_1(X, Y_1)$, $f_2(X, Y_1, Y_2), \dots, f_t(X, Y_1, Y_2, \dots, Y_t)$ be polynomials of the type $f_i(X, Y_1, \dots, Y_i) = Y_i^{d_i} - g_i(X, Y_1, \dots, Y_i)$,

where $d_i \ge 0$ and g_i is of degree $< d_i$ in Y_i . Let $\mathfrak{Y}_1, \ldots, \mathfrak{Y}_t$ be algebraic functions with $f_1(X, \mathfrak{Y}_1) = \ldots = f_t(X, \mathfrak{Y}_1, \ldots, \mathfrak{Y}_t) = 0$, and suppose that

$$\left[k(X, \mathcal{Y}_1, \dots, \mathcal{Y}_t): k(X)\right] = d_1 d_2 \dots d_t$$

Then the equations

$$f_1 = f_2 = \dots = f_t = 0$$

define a curve; that is, a variety of dimension 1 .

Examples: (1) Let k be a field whose characteristic does not equal 2 or 3. Take t = 2, so that n = 3. Consider $f_1(x, Y_1) = Y_1^2 + X^2 - 1$, $f_2(x, Y_1Y_2) = Y_2^2 + X^2 - 4$. Then $\mathfrak{Y}_1^2 = 1 - X^2$, and $\mathfrak{Y}_2^2 = 4 - X^2$, or $\mathfrak{Y}_1 = \sqrt{1 - X^2}$ and $\mathfrak{Y}_2 = \sqrt{4 - X^2}$. Also,

(2.1)
$$[k(X,\sqrt{1-X^2},\sqrt{4-X^2}): k(X)] = 4$$

By Theorem 2D , the equations $f_1 = f_2 = 0$ define a curve. This curve is the intersection of two circular cylinders with radii 1,2 , whose axes intersect at right angles.

(2) Same as above, but with $f_2(X, Y_1, Y_2) = Y_2^2 + X^2 - 1$. In this case $[k(X, y_1, y_2): k(X)] = 2$. So Theorem 2D does not apply. In fact,

^{†)} The proof of (2.1) is as follows. Since the characteristic is not 2 or 3, the four polynomials 1 - X, 1 + X, 2 - X, 2 + X are distinct and are irreducible. Hence none of $1 - X^2$, $4 - X^2$ and $(1 - X^2)/(4 - X^2)$ is a square in k(X), and each of $\sqrt{1 - X^2}$, $\sqrt{4 - X^2}$, $\sqrt{4 - X^2}$, $\sqrt{(1 - X^2)/(4 - X^2)}$ is of degree 2 over k(X). It will suffice to show that $\sqrt{4 - X^2} \notin k(X,\sqrt{1 - X^2})$. Suppose to the contrary that

 $[\]sqrt{4 - x^2} = r(x) + s(x) \sqrt{1 - x^2}$

with rational functions r(X), s(X). We now square and observe that the factor in front of $\sqrt{1-x^2}$ must be zero. Thus 2r(X) s(X) = 0. If r(X) = 0, then $(1 - x^2)/(1 - x^4)$ would be a square in k(X), which was ruled out. If s(X) = 0, then $4 - x^2$ would be a square, which was also ruled out.

The situation is similar to the one in Corollary 5B of Chapter II, $\S5$, and the exercise below it.

$$A((f_1, f_2)) = V_1 \cup V_2$$
,

where $V_1 = A((f_1, Y_1 - Y_2))$, $V_2 = A(f_1, Y_1 + Y_2))$. Thus we do not obtain a variety. This algebraic set is the intersection of two circular cylinders of radius 1 whose axes intersect at right angles. Both V_1 and V_2 are the intersection of a plane with a circular cylinder; they are ellipses.

(3) Let $k = F_q$, the finite field of q elements. Take t = 2, n = 3 and $f_1(X,Y_1) = Y_1^d - f(X)$ where d|(q-1), and $f_2(X,Y_2) = Y_2^q - Y_2 - g(X)$. Suppose f_1, f_2 to be irreducible. Then $\mathfrak{N}_1, \mathfrak{N}_2$ with $\mathfrak{Y}_1^d = f(X)$, $\mathfrak{Y}_2^q - \mathfrak{Y}_2 = g(X)$ have

 $[k(X, \mathfrak{Y}_1) : k(X)] = d$, $[k(X, \mathfrak{Y}_2) : k(X)] = q$.

Since (d,q) = 1, we have $[k(X, \mathfrak{Y}_1, \mathfrak{Y}_2) : k(X)] = dq$. Thus $f_1 = f_2 = 0$ defines a curve. In the same way one sees that if f_1, f_2 both are absolutely irreducible, then $f_1 = f_2 = 0$ is an absolute curve, i.e., a curve which is an absolute variety.

<u>Proof of Theorem 2D</u>: Pick $\underline{x} = (x, y_1, \dots, y_t) \in \Omega^n$, such that the mapping $x \to x$, $\mathfrak{Y}_i \to y_i$ $(1 \le i \le t)$ yields an isomorphism of $k(x, \mathfrak{Y}_1, \dots, \mathfrak{Y}_t)$ to $k(x, y_1, \dots, y_t)$. We claim that the set of zeros of $f_1 = f_1 = \dots = f_t = 0$ is the variety (\overline{x}) . It suffices to show that $\mathfrak{I}(\underline{x}) = (f_1, \dots, f_t)$; for then $(\overline{x}) = A(\mathfrak{I}(\underline{x})) = A((f_1, \dots, f_t))$. Clearly, every $f \in (f_1, \dots, f_t)$ vanishes on \underline{x} ; so $(f_1, \dots, f_t) \subseteq \mathfrak{I}(\underline{x})$. Conversely, we are going to show that

(2.2)
$$\underline{\text{if}} f(\underline{x}) = 0 , \underline{\text{then}} f \in (f_1, \dots, f_t) .$$

 $f = f(X,Y_1,\ldots,Y_s) \text{ where } 0 \leq s \leq t \text{ . If } s = 0 \text{ , then } f(x) = 0 \text{ ;}$ but x is transcendental over k , so f(X) = 0 , whence $f \in (f_1,\ldots,f_t)$.
Next, we show that if (2.2) is true for s-1, it is true for s .
In $f(X,Y_1,\ldots,Y_s)$, if $Y_s^{d_s}$ occurs, replace it by $g_s(X,Y_1,\ldots,Y_s)$.
Do this repeatedly, until you get a polynomial $\hat{f}(X,Y_1,\ldots,Y_s)$ of
degree $< d_s$ in Y_s . We observe that $f - \hat{f} \in (f_s)$, and that $\hat{f}(x) = 0$. Suppose

(2.3)
$$\hat{f} = Y_{s}^{d_{s}-1} h_{d_{s}-1}(X, Y_{1}, \dots, Y_{s-1}) + \dots + h_{0}(X, Y_{1}, \dots, Y_{s-1}).$$

Our hypothesis implies that $[k(x,y_1,\ldots,y_t): k(x)] = d_1 d_2 \ldots d_t$, and we have

$$k(\mathbf{x}) \subseteq k(\mathbf{x}, \mathbf{y}_1) \subseteq k(\mathbf{x}, \mathbf{y}_1, \mathbf{y}_1) \subseteq \ldots \subseteq k(\mathbf{x}, \mathbf{y}_1, \ldots, \mathbf{y}_t) ,$$

where for each i in $1 \le i \le t$, the field $k(x,y_1,\ldots,y_i)$ is an extension of degree $\le d_i$ over $k(x,y_1,\ldots,y_{i-1})$. Hence it is actually an extension of degree d_i . In particular, $[k(x,y_1,\ldots,y_s): k(x,y_1,\ldots,y_{s-1})] = d_s$. Since $\hat{f}(\underline{x}) = 0$, we see from (2.3) that each $h_j(\underline{x}) = 0$. So by induction, each $h_j \in (f_1,\ldots,f_t)$, hence also $\hat{f} \in (f_1,\ldots,f_t)$, and $f \in (f_1,\ldots,f_t)$. The proof of (2.2) and therefore the proof of the *t*heorem is complete.

§3. Rational Maps.

A <u>rational function</u> φ <u>on</u> Ω^n is an element of $k(X_1, \ldots, X_n)$, i.e. of the form $\varphi = a(X_1, \ldots, X_n) / b(X_1, \ldots, X_n)$, where $a(X_1, \ldots, X_n)$, $b(X_1, \ldots, X_n)$ are polynomials over k. We may assume that a,b have no common factor. We say a rational function φ is defined (or regular) at a point $\underline{x} \in \Omega^n$ if $b(\underline{x}) \neq 0$. If φ is defined at \underline{x} , put $\varphi(\underline{x}) = a(\underline{x}) / b(\underline{x})$.

The rational functions φ which are defined at $\underline{x} \in \Omega^n$ form a ring consisting of all $a(\underline{x}) / b(\underline{x})$ with $b(\underline{x}) \neq 0$. This ring is denoted as $\mathfrak{D}_{\underline{x}}$ and is called the <u>local ring</u> of \underline{x} . Let $\mathfrak{I}_{\underline{x}}$ consist of all $\varphi \in \mathfrak{D}_{\underline{x}}$ with $\varphi(\underline{x}) = 0$. (Thus $\mathfrak{I}_{\underline{x}}$ consists of all $a(\underline{x}) / b(\underline{x})$ with $b(\underline{x}) \neq 0$, $a(\underline{x}) = 0$.) Then $\mathfrak{I}_{\underline{x}}$ is an ideal in $\mathfrak{D}_{\underline{x}}$.

<u>LEMMA 3A</u>. (i) If $\underline{x} \to \underline{y}$, then $\underbrace{\mathfrak{D}}_{\underline{y}} \subseteq \underbrace{\mathfrak{D}}_{\underline{x}}$. (ii) If $\underline{x} \leftrightarrow \underline{y}$, then $\underbrace{\mathfrak{D}}_{\underline{x}} = \underbrace{\mathfrak{D}}_{\underline{y}}$ and $\underbrace{\mathfrak{D}}_{\underline{x}} = \underbrace{\mathfrak{D}}_{\underline{y}}$.

Proof: Obvious.

<u>THEOREM 3B.</u> (i) $\Im_{\underline{x}}$ is a maximal ideal in $\Im_{\underline{x}}$, hence $\Im_{\underline{x}} \Im_{\underline{x}}$ is a field (called the function field of \underline{x}).

(ii) $\mathfrak{D}_{\mathbf{x}} / \mathfrak{J}_{\mathbf{x}} \stackrel{\text{is}}{=} \mathbf{k} - \underline{\text{isomorphic}}_{\mathbf{x}} t_{\mathbf{x}} \mathbf{k} (\mathbf{x})$.

(ii) The map $\omega: \mathfrak{Q} \xrightarrow{\mathbf{x}} k(\mathbf{x}) = \mathbf{y}$ given by

$$\omega (\mathbf{a} (\mathbf{X}) / \mathbf{b} (\mathbf{X})) = \mathbf{a} (\mathbf{x}) / \mathbf{b} (\mathbf{x})$$

has image $k(\underline{x})$ and kernel $\Im_{\underline{x}}$. Therefore $k(\underline{x}) \cong \Im_{\underline{x}} \land \Im_{\underline{x}}$.

We now come to the definition of a rational function defined on a variety V. The simplest definition to try would be that a rational function on V is the restriction to V of a rational function $\varphi(\underline{X})$ on Ω^n . However, we want this rational function to be defined for at least some point of V. Hence by Lemma 3A it must be defined for every generic point \underline{x} of V, i.e. it must lie in $\mathfrak{D}_{\underline{X}}$. Moreover, given two functions $a(\underline{X}) / b(\underline{X})$ and $c(\underline{X}) / d(\underline{X})$ in $\mathfrak{D}_{\underline{X}}$, we should regard them as equal functions on V if their restrictions to V are equal. Clearly this is true precisely if their difference lies in $\mathfrak{Z}_{\underline{X}}$.

Thus we come to define a <u>rational function on</u> V as an element of $\mathfrak{D}_{\underline{x}} \mathfrak{N}_{\underline{x}}$, where \underline{x} is a generic point. Clearly this is independent of the choice of the generic point. $\mathfrak{D}_{\underline{x}} = \mathfrak{D}_{V}$ (say) consists of $a(\underline{x}) / b(\underline{x})$ with $b(\underline{x}) \notin \mathfrak{J}(V) = \mathfrak{J}(\underline{x})$, and $\mathfrak{J}_{\underline{x}} = \mathfrak{I}_{V}$ (say) consists of $a(\underline{x}) / b(\underline{x})$ with $b(\underline{x}) \notin \mathfrak{J}(V) = \mathfrak{J}(\underline{x})$, where $\mathfrak{N}_{\underline{x}} = \mathfrak{I}_{V}$ (say) consists of $a(\underline{x}) / b(\underline{x})$ with $a(\underline{x}) \notin \mathfrak{I}(V)$, $b(\underline{x}) \notin \mathfrak{I}(V)$. We say a function $r(\underline{x}) \notin k(\underline{x})$ represents a rational function φ of V if $r(\underline{x}) \notin \mathfrak{D}_{V}$ and if $r(\underline{x})$ lies in the class φ of $\mathfrak{D} / \mathfrak{I}_{\underline{x}}$.

Example: Let n = 2, $k = \mathbf{Q}$, $\Omega = \mathbf{C}$, and V the circle $x_1^2 + x_2^2 - 1 = 0$. Let φ be the rational function represented by X_1/X_2 . Then φ is also represented by $(X_1 + X_1^2 + X_2^2 - 1)/X_2$ and by $X_1/(X_2 + X_1^2 + X_2^2 - 1)$, for example.

The rational functions defined on V form a field, called the <u>function field</u> of V. This field is denoted k(V). In view of Theorem 3B, the function field is k-isomorphic to k(x) where $x = \frac{x}{z}$ is any generic point of V.

Let $\psi_1^V, \dots, \psi_n^V$ be the elements of k(V) represented, respectively, by the polynomials X_1, \dots, X_n . Then it is clear that

$$k(V) = k(\psi_1^V, \dots, \psi_n^V)$$

It is easily seen that a polynomial $f(X_1, \ldots, X_n)$ has $f(\psi_1^V, \ldots, \psi_n^V) = 0$ if and only if $f \in \mathfrak{J}(V)$. Hence if $\underline{x} = (x_1, \ldots, x_n)$ is a generic point, then there is a k-isomorphism $k(\underline{x}) \to k(V)$ with $x_i \to \psi_i^V$ $(i = 1, \ldots, n)$.

Example: Let n = 2, k = Q, $\Omega = C$, and V the circle $x_1^2 + x_2^2 - 1 = 0$. We have seen in previous examples that if Π is trancendental over Q, then the point $\left(2 \Pi / (\Pi^2 + 1), (\Pi^2 - 1) / (\Pi^2 + 1) \right)$ is a generic point for V. Clearly $k(\underline{x}) = k(\Pi) \cong k(X)$. Thus the function field of the circle is isomorphic to k(X).

A curve is called <u>rational</u> if its function field is $\cong k(X)$. Thus the circle is a rational curve. It can be shown that $x_1^n + x_2^n - 1 = 0$ is not a rational curve if $n \ge 2$ and is not divisible by the characteristic. See Shafarevich (1969), p. 8.

Let φ be a rational function on a variety $V = \overline{(\underline{x})}$ and let \underline{y} be a point of V. We say that φ is defined at \underline{y} if there exists a representative $r(\underline{X}) = a(\underline{X}) / b(\underline{X})$ with $b(\underline{y}) \neq 0$. If this is the case, set

$$\varphi(\underline{y}) = a(\underline{y}) / b(\underline{y})$$
.

We have to show that this independent of the representative. Suppose that $_{\odot}$ is represented by both $a(\underline{X})/b(\underline{X})$ and by $\hat{a}(\underline{X})/\hat{b}(\underline{X})$, and that $b(\underline{y}) \neq 0$, $\hat{b}(\underline{y}) \neq 0$. The difference $(a\hat{b} - \hat{a}b)/(b\hat{b})$ represents

the zero rational function on V. Hence $a(\underline{x})\hat{b}(\underline{x}) - \hat{a}(\underline{x})b(\underline{x}) = 0$, and since $\underline{x} \rightarrow \underline{y}$, we have $a(\underline{y})\hat{b}(\underline{y}) - \hat{a}(\underline{y})b(\underline{y}) = 0$. We conclude that $a(\underline{y})/b(\underline{y}) = \hat{a}(\underline{y})/\hat{b}(\underline{y})$. Examples: (1) Let n = 3, k = Q, $\Omega = C$, and V the sphere $x_1^2 + x_2^2 + x_3^2 - 1 = 0$. Let φ be the rational function represented by 1 = 1/1. Put $\underline{y} = (1,0,0)$. Now φ is defined at \underline{y} and $\varphi(\underline{y}) = 1$. Now φ is also represented by $1/(x_1^2 + x_2^2 + x_3^2)$. Again the denominator does not vanish at \underline{y} . If we use this representation, we again find, as expected, that $\varphi(\underline{y}) = 1$. Finally φ is also represented by $(x_1 - x_1^2 - x_2^2 - x_3^2)/(x_1 - 1)$. This representative cannot be used to compute $\varphi(\underline{y})$, since its denominator vanishes at \underline{y} .

(2) Let n, k, Ω and V be as above. Let φ be the rational function represented by $1/X_3$. This function φ is certainly defined if $\underline{y} \in V$ and $y_3 \neq 0$. We ask if there is representative of φ which allows us to define $\varphi(\underline{y})$ for some \underline{y} with $y_3 = 0$. Let $a(\underline{x}Yb(\underline{x})$ be a representative. Then

$$\frac{1}{\overline{X}_{3}} - \frac{a(\underline{x})}{b(\underline{x})} = \frac{b(\underline{x}) - \overline{X}_{3}a(\underline{x})}{\overline{X}_{3}b(\underline{x})}$$

vanishes on V. Thus $b(\underline{x}) - a(\underline{x}) X_3 \in (X_1^2 + X_2^2 + X_3^2 - 1)$. So $b(\underline{x}) \in (X_3, X_1^2 + X_2^2 + X_3^2 - 1)$, and therefore $b(\underline{y}) = 0$, if $\underline{y} \in V$ and $y_3 = 0$. It follows that ϖ is defined precisely for those points \underline{y} on the sphere which are not on the circle $y_3 = 0$, $y_1^2 + y_2^2 - 1 = 0$.

algebraic subset of V.

Proof: The set of points where ϕ is not defined is

$$S = V \cap \bigcap_{b(\underline{x})} A((b(\underline{x})))$$

where the intersection is taken over all b(X) which occur as a denominator of a representative of φ . Since the intersection of an arbitrary number of algebraic sets is an algebraic set, S is an algebraic set. In addition, S is a proper subset of V, since a generic point of V is not in S.

Let φ be a rational function of a variety V, and let W be a subvariety of V. We say φ is defined on W if φ is defined at a generic point of W.

A <u>rational map</u> $\underline{\varphi}$ from a variety V <u>to</u> Ω^m is defined simply as an m-tuple of rational functions $(\varphi_1, \dots, \varphi_m)$. We say $\underline{\varphi}$ is <u>defined at</u> $\underline{y} \in V$, if each $\varphi_i(\underline{y})$ is defined at \underline{y} . If this is the case, put $\underline{\varphi}(\underline{y}) = (\varphi_1(\underline{y}), \dots, \varphi_n(\underline{y}))$. The set of points $\underline{y} \in V$ for which $\underline{\varphi}$ is not defined is the union of the sets of points for which φ_i is not defined (i = 1,...,m). In view of Theorem 3C, and since a finite union of proper algebraic subsets of a variety is still a proper algebraic subset, the points where $\underline{\varphi}$ is not defined are a proper algebraic subset of V.

The image of $\underline{\phi}$ is defined as the closure of the set of points $\underline{\phi}(\underline{y})$, $\underline{y} \in V_A$ for which ϕ is defined.

<u>THEOREM 3D.</u> The image of $\underline{\phi}$ is a variety W. If \underline{x} is a generic point of V, then $\underline{\phi}(\underline{x})$ is a generic point of W.

240

<u>Proof</u>: Let $V = (\overline{x})$. If $\underline{x} \to \underline{y}$ and if $\underline{\phi}(\underline{y})$ is defined, we have to show that $\underline{\phi}(\underline{x}) \to \underline{\phi}(\underline{y})$. Let $\underline{\phi} = (\phi_1, \dots, \phi_m)$, and suppose that ϕ_i is represented by $a_i(\underline{x}) / b_i(\underline{x})$ with $b_i(\underline{y}) \neq 0$. Let $f(\underline{\phi}(\underline{x})) = 0$, and suppose that $f(\underline{\psi}) = f(U_1, \dots, U_m)$ is of degree d_i in U_i . Put

$$g(U_1,\ldots,U_m,V_1,\ldots,V_m) = V_1^{d_1} \cdots V_m^{d_m} f\left(\frac{U_1}{V_1}, \frac{U_m}{V_m}\right)$$

Since $f(a_1(\underline{x})/b_1(\underline{x}), \dots, a_m(\underline{x})/b_m(\underline{x})) = 0$, it follows that $g(a_1(\underline{x}), \dots, a_m(\underline{x}), b_1(\underline{x}), \dots, b_m(\underline{x})) = 0$. But $\underline{x} \rightarrow \underline{y}$, so $g(a_1(\underline{y}), \dots, a_m(\underline{y}), b_1(\underline{y}), \dots, b_m(\underline{y})) = 0$, and

$$b_1(\underline{y})^{d_1} \dots b_m(\underline{y})^{d_m} f\left(\frac{a_1(\underline{y})}{b_1(\underline{y})}, \dots, \frac{a_m(\underline{y})}{b_m(\underline{y})}\right) = 0$$

Since $b_1(\underline{y})^{d_1} \cdots b_{m_1}(\underline{y})^{d_m} \neq 0$, it follows that

$$f(\underline{\phi}(\underline{y})) = f\left(\frac{a_1(\underline{y})}{b_1(\underline{y})}, \dots, \frac{a_m(\underline{y})}{b_m(\underline{y})}\right) = 0$$

So every polynomial f vanishing on $\underline{\phi}(\underline{x})$ also vanishes on $\underline{\phi}(\underline{y})$, and $\underline{\phi}(\underline{x}) \rightarrow \underline{\phi}(\underline{y})$.

Example: Let V be the sphere $x_1^2 + x_2^2 + x_3^2 = 1$, and let $\underline{\phi}: V \rightarrow \Omega^2$ have a representation as $\underline{\phi} = ((x_1^2 + x_2^2)/x_3^2, -1/x_3^2)$. Let $\underline{\xi} = (\xi_1, \xi_2, \xi_3)$ be a generic point of V. We have

$$\underline{\Psi}(\underline{\xi}) = \left(\frac{\xi_1^2 + \xi_2^2}{\xi_3^2}, -\frac{1}{\xi_3^2}\right) = \left(\frac{1}{\xi_3^2} - 1, -\frac{1}{\xi_3^2}\right).$$

Thus $\underline{\phi}(\underline{\xi}) = (\zeta_1, \zeta_2)$ satisfies $\zeta_1 + \zeta_2 + 1 = 0$. Since $\underline{\phi}(\underline{\xi})$ has transcendence degree 1, it is in fact a generic point of the line $z_1 + z_2 + 1 = 0$. Thus this line is the image of $\underline{\phi}$. But not every point on this line is of the type $\underline{\phi}(\underline{y})$. If (z_1, z_2) is on the line and is $\neq (-1, 0)$, then if we pick y_1, y_2, y_3 in Ω with $y_3 = 1/\sqrt{z_2}$, $y_1^2 + y_2^2 + y_3^2 - 1 = 0$, we obtain $\underline{\phi}(\underline{y}) = (z_1, z_2)$. But $(z_1, z_2) = (-1, 0)$ is not of the type $\underline{\phi}(\underline{y})$. For if $y_3 \neq 0$, then $\underline{\phi}(\underline{y}) \neq (-1, 0)$, and if $y_3 = 0$, then $\underline{\phi}(\underline{y})$ is not defined.

<u>THEOREM 3E.</u> Let $\underline{\varphi}$ be a rational map from V with image W. Let T be a proper algebraic subset of W. Then the set $L \subseteq V$ consisting of points \underline{y} where either $\underline{\phi}$ is not defined or where $\underline{\phi}(\underline{y}) \in T$, is a proper algebraic subset of V.

<u>Proof</u>: Suppose W and T lie in Ω^m . Suppose T is defined by equations $g_1(\underline{y}) = \dots = g_t(\underline{y}) = 0$, where $\underline{y} = (y_1, \dots, y_m)$. Let $g_i(Y_1, \dots, Y_m)$ have degree d_{ij} in Y_j $(1 \le i \le t, 1 \le j \le m)$. Put

$$h_{i}(Y_{1},\ldots,Y_{m},Z_{1},\ldots,Z_{m}) = Z^{d_{i1}} \ldots Z^{d_{im}} g_{i}\left(\frac{Y_{1}}{Z_{1}},\ldots,\frac{Y_{m}}{Z_{m}}\right) .$$

Let

$$\underbrace{\underline{\mathbf{r}}}_{\underline{\mathbf{r}}} = \underbrace{\underline{\mathbf{r}}}_{\underline{\mathbf{n}}} \underbrace{\left[\underbrace{\underline{\mathbf{x}}}_{\underline{\mathbf{n}}} \right]}_{\underline{\mathbf{n}}} = \left(\mathbf{a}_{1} \left(\underbrace{\underline{\mathbf{x}}}_{\underline{\mathbf{n}}} \right) / \mathbf{b}_{1} \left(\underbrace{\underline{\mathbf{x}}}_{\underline{\mathbf{n}}} \right), \dots, \mathbf{a}_{m} \left(\underbrace{\underline{\mathbf{x}}}_{\underline{\mathbf{n}}} \right) / \mathbf{b}_{m} \left(\underbrace{\underline{\mathbf{x}}}_{\underline{\mathbf{n}}} \right) \right)$$

represent ϕ and put

$$\begin{split} & \overset{\mathbf{r}}{\stackrel{}_{=}} (\underbrace{\mathbf{x}}_{i}) = \mathbf{b}_{1}(\underbrace{\mathbf{x}}_{=}) \dots \mathbf{b}_{m}(\underbrace{\mathbf{x}}_{=}) \mathbf{h}_{i} (\mathbf{a}_{1}(\underbrace{\mathbf{x}}_{=}), \dots, \mathbf{a}_{m}(\underbrace{\mathbf{x}}_{=}), \mathbf{b}_{1}(\underbrace{\mathbf{x}}_{=}), \dots, \mathbf{b}_{m}(\underbrace{\mathbf{x}}_{=})) \quad (1 \leq i \leq t) . \\ & \text{Let } \underset{\mathbf{r}}{\text{Let }} \text{ consist of points } \underbrace{\mathbf{y}}_{=} \text{ of } \mathbf{V} \text{ with } \end{split}$$

$$\ell_1^{\underbrace{r}}(\underline{y}) = \dots = \ell_t^{\underbrace{r}}(\underline{y}) = 0 .$$

We claim that

$$\mathbf{L} = \bigcap \mathbf{L}_{\underline{r}},$$

with the intersection taken over all representations \underline{r} of $\underline{\varphi}$. In fact if $\underline{y} \notin \underline{L}_{\underline{r}}$ for some \underline{r} , then some $\ell_{\underline{i}}^{\underline{r}}(\underline{y}) \neq 0$, and hence $b_1(\underline{y}_m) \cdots b_m(\underline{y}) \neq 0$ and $g_i(a_1(\underline{y})/b_1(\underline{y}), \ldots, a_m(\underline{y})/b_m(\underline{y})) \neq 0$. So $\underline{\varphi}(\underline{y})$ is defined and $g_i(\underline{\varphi}(\underline{y})) \neq 0$, so that $\underline{\varphi}(\underline{y}) \notin T$ and $\underline{y} \notin L$. On the other hand if $\underline{y} \notin L$, then $\underline{\varphi}(\underline{y})$ is defined, and for some representation \underline{r} we have $b_1(\underline{y}) \cdots b_m(\underline{y}) \neq 0$. Moreover, $\underline{\varphi}(\underline{y}) \notin T$, whence some $g_i(\underline{\varphi}(\underline{y})) \neq 0$, and $\ell_{\underline{i}}^{\underline{r}}(\underline{y}) \neq 0$. Thus $\underline{y} \notin \underline{L}_{\underline{r}}$, and (3.1) is established.

In view of (3.1) , L is an algebraic subset of V . Since a generic point of V lies outside each L , the set L is a proper algebraic subset.

Example. Let $V \subseteq \Omega^3$ be the sphere $x_1^2 + x_2^2 + x_3^2 - 1 = 0$ and let $W \subseteq \Omega^2$ be the line $z_1 + z_2 + 1 = 0$. We have seen above that the map $\underline{\phi}$ represented by $((X_1^2 + X_2^2)/X_3^2, -1/X_3^2)$ has image W. Let $T \subseteq W$ consist of the single point (0,-1). It is easily seen that the set L of points \underline{y} where $\underline{\phi}(\underline{y})$ is not defined or where $\underline{\phi}(\underline{y}) \in T$ consists of $\underline{y} \in V$ with $y_3(y_3^2 - 1) = 0$.

4. Birational Maps.

We define a rational map from a variety V to a variety W as a rational map $\underline{\phi}$ of V whose image is contained in W. We express this in symbols by $\underline{\phi}: V \rightarrow W$.

Let $\underline{\phi}: V \to W$ and $\underline{\psi}: W \to U$ be rational maps such that $\underline{\psi}$ is defined on the image of V under $\underline{\phi}$. Thus if \underline{x} is a generic point of V, then $\underline{\psi}$ is defined on $\underline{\phi}(\underline{x})$. Suppose $V \subseteq \underline{\Omega}^V$, $W \subseteq \underline{\Omega}^W$, $U \subseteq \underline{\Omega}^U$, and suppose $\underline{\phi}$ is represented by

(4.1)
$$(a_1(\underline{X})/b_1(\underline{X}), \ldots, a_w(\underline{X})/b_w(\underline{X})),$$

and ψ is represented by

(4.2)
$$(c_1(\underline{Y})/d_1(\underline{Y}), \ldots, c_u(\underline{Y})/d_u(\underline{Y}))$$
,

where d_1, \ldots, d_u are non-zero at $\underline{\phi}(\underline{x})$. Let $\underline{\psi} \underline{\phi}$ be the rational map $V \to U$ represented by

(4.3)
$$(c_1(a_1(\underline{x})/b_1(\underline{x}),\ldots)/d_1(a_1(\underline{x})/b_1(\underline{x}),\ldots)),\ldots,c_u(\ldots)/d_u(\ldots))$$

Since d_1, \ldots, d_u are not zero at $\underline{\varphi}(\underline{x})$, each of the u components in (4.3) lies in $\mathcal{O}_{\underline{x}}$, and $\underline{\psi} \underline{\varphi}(\underline{x})$ is defined and equals $\underline{\psi}(\underline{\varphi}(\underline{x}))$. It is clear that $\underline{\psi} \underline{\varphi}$ is independent of the special representations (4.1), (4.2) of $\underline{\varphi}$, $\underline{\psi}$, respectively. We call $\underline{\psi} \underline{\varphi}$ the <u>composite</u> of $\underline{\psi}$ and $\underline{\varphi}$. If \underline{v} is a point of V such that $\underline{\varphi}$ is defined at \underline{v} and $\underline{\psi}$ is defined at $\underline{\varphi}(\underline{v})$, then $\underline{\psi} \underline{\varphi}$ is defined at \underline{v} and

$$\psi \varphi (\underline{v}) = \psi (\varphi (\underline{v}))$$
.

But $\underset{=}{\overset{\psi}{\varphi}(v)}$ may be defined although perhaps either $\underset{=}{\overset{\varphi}{\varphi}(v)}$ is not defined,

or $\underline{\phi}(\underline{v})$ is defined and $\underline{\psi}(\underline{\phi}(\underline{v}))$ is not defined.

Examples. (1) Let $V = \Omega^1$, $W = \Omega^2$, $U = V = \Omega^1$. Further let $\underline{\phi}$: $V \rightarrow W$ be represented by (X^2, X) , and let $\underline{\psi}$: $W \rightarrow V$ be represented by X_1/X_2 . Then $\underline{\psi} \underline{\phi}$ is the identity map on V. Thus $\underline{\psi} \underline{\phi}$ is defined on 0 and $\underline{\psi} \underline{\phi}$ (0) = 0. However $\underline{\phi}$ (0) = (0,0), and $\underline{\psi}$ is not defined at (0,0).

(2) Let k = Q and $\Omega = C$. Let $V = \Omega^1$, W the unit circle $x_1^2 + x_2^2 - 1 = 0$, and $U = V = \Omega^1$. Further let $\underline{\phi}: V \rightarrow W$ be represented by $(2X/(X^2 + 1), (X^2 - 1)/(X^2 + 1))$, and let $\underline{\psi}: W \rightarrow V$ be represented by $x_1/(1 - x_2)$. Then $\underline{\psi} = \underline{\phi}$ is the identity map on V and $\underline{\phi} = \underline{\psi}$ is the identity map on W. In particular, $\underline{\psi} = \underline{\phi}$ is defined at i and $\underline{\psi} = \underline{\phi}$ (i) = i, but $\underline{\phi}$ is not defined at i.

<u>Exercise</u>. Show that in Example (2), $\underline{\phi}$ is defined for every point of V except for i, -i, and that $\underline{\psi}$ is defined for every point of W except for (0,1). Further show that every point of V with the exception of i,-i is of the type $\underline{\psi}(\underline{y})$ with $\underline{y} \in W$, and every point of W with the exception of (0,1) is of the type $\underline{\phi}(\underline{x})$ with $\underline{x} \in V$. Hence if V' is obtained from V by deleting i, -i and W' is obtained from W by deleting (0,1), then $\underline{\phi}$ and $\underline{\psi}$ provide a 1-1 correspondence between points of V' and of W'.

A rational map $\underline{\phi}: V \to W$ is called a <u>bi-rational map</u> (or a <u>bi-rational correspondence</u>) if there exists a rational map $\psi: W \to V$ such that $\underline{\psi} \underline{\phi}$ is the identity on V and $\underline{\phi} \underline{\psi}$ is the identity on W. Two varieties are <u>bi-rationally equivalent</u> if there exists a bi-rational correspondence between them. We denote this by $V \cong W$. This is an equivalence relation of varieties. (Note that this relation is defined in terms of the ground field k).

<u>THEOREM 4A.</u> Let $\underline{\phi}$ be a bi-rational map from V to W with inverse $\underline{\psi}$. Then there exist proper algebraic subsets L of V and M of W, such that on the set theoretic differences V \leftarrow L and W \leftarrow M, the maps $\underline{\phi}$ and $\underline{\psi}$ are defined everywhere and are inverses of each other.

<u>Proof</u>: Let S be the subset of V where $\underline{\phi}$ is not defined. Let T be the subset of W where $\underline{\psi}$ is not defined. Let L be the subset of V where either $\underline{\phi}$ is not defined or where $\underline{\phi}(\underline{x}) \in T$. Similarly, let M be the subset of W where either $\underline{\psi}$ is not defined or where $\underline{\psi}(\underline{x}) \in S$. In view of Theorem 3E, the sets L,M are proper algebraic subsets of V,W, respectively. Now $\underline{\phi}$ is defined on V~L. Clearly, if $\underline{x} \in V \sim L$, then $\underline{\phi}(\underline{x}) \notin T$. So $\underline{\psi}(\underline{\phi}(\underline{x}))$ is defined; but then $\underline{\psi}(\underline{\phi}(\underline{x})) = \underline{x}$. From this it follows that $\underline{\phi}(\underline{x}) \in W \sim M$, since $\underline{x} \notin S$. So the restriction of $\underline{\phi}$ to V~L maps V~L into W-M. The restriction of $\underline{\psi}$ to W-M maps W-M into V-L. These maps are inverses of each other.

<u>THEOREM 4B.</u> Let V and W be varieties. Then $V \cong W$ if and only if their function fields are k-isomorphic.

<u>Proof</u>: If \underline{x} is a generic point of V and \underline{y} is a generic point of W, then the function fields are isomorphic to $k(\underline{x})$ and $k(\underline{y})$, respectively. So we need to show that $V \cong W$ if and only if $k(\underline{x})$ is isomorphic to $k(\underline{y})$. Suppose that $V \cong W$. Let $\underline{\phi}: V \to W$ and $\underline{\psi}: W \to V$ be bi-rational maps, such that $\underline{\phi} \underline{\psi}$ and $\underline{\psi} \underline{\phi}$ are the identity maps on W and V, respectively.

It is clear from Theorem 4A that the "image" of V under $\underline{\phi}$ is W. Thus if \underline{x} is a generic point of V, then by Theorem 3D the point $\underline{y} = \underline{\phi}(\underline{x})$ is a generic point of W. We have $\underline{y} = \underline{\phi}(\underline{x})$ and $\underline{x} = \underline{\psi}(\underline{y})$, whence $k(\underline{y}) \subseteq k(\underline{y})$ and $k(\underline{x}) \subseteq k(\underline{y})$, whence $k(\underline{x}) = k(\underline{y})$. Thus the function fields are certainly k-isomorphic.

Conversely, let $k(\underline{x})$ be isomorphic to $k(\underline{y})$, where $\underline{x} = (x_1, \dots, x_n)$, $\underline{y} = (y_1, \dots, y_m)$ are generic points of V, W respectively. Let α be a k-isomorphism from $k(\underline{x})$ to $k(\underline{y})$. Let $\alpha(x_1) = x'_1$ (i = 1,...,n) and put $\underline{x}' = (x'_1, \dots, x'_n)$. Then $k(\underline{x}') = k(\underline{y})$ and \underline{x}' is again a generic point of V. Thus we may suppose that $k(\underline{x}) = k(\underline{y})$. Suppose that

and

 $y_{i} = r_{i} (\underline{x}) \qquad (i = 1, ..., m)$ $x_{j} = s_{j} (\underline{y}) \qquad (j = 1, ..., n)$

for certain rational functions r_1, \ldots, r_m and s_1, \ldots, s_n . Then $\underline{\phi}: V \rightarrow W$ represented by $(r_1(\underline{X}), \ldots, r_m(\underline{X}))$ and $\underline{\psi}: W \rightarrow V$ represented by $(s_1(\underline{Y}), \ldots, s_n(\underline{Y}))$ are rational maps which are inverses of each other.

In §3 we defined a rational curve as one whose function field is isomorphic to k(X). In view of Theorem 4B, we may also define a rational curve as a curve which is birationally equivalent to Ω^1 .

LEMMA 4C. The following two conditions on a field k are equivalent.

(i). Either char k = 0, or char k = p > 0 and for every $a \in k$ there is a $b \in k$ with $b^{p} = a$. (ii), Every algebraic extension of k is separable.

<u>Proof.</u> We clearly may suppose that char k = p > 0. (i) \rightarrow (ii). A polynomial of k[X] of the type

(4.4)
$$a_0 + a_1 X^p + ... + a_t X^{tp}$$

equals $(b_0 + b_1 X + ... + b_t X^t)^p$ where $b_i^p = a_i$ (i = 0,...,t). Thus an irreducible polynomial over k is not of the type (4.4), hence is separable.

(ii) \rightarrow (i). Suppose there is an $a \in k$ not of the type $a = b^p$ with $b \in k$. Then there is a b which is not in k but in an algebraic extension of k, with $a = b^p$. Since p is a prime, it is easily seen that i = p is the smallest positive exponent with $b^i \in k$. The polynomial $x^p - a = (X - b)^p$ has proper factors $(X - b)^i$ with $1 \leq i \leq p - 1$, but none of these factors lies in k[X] since $b^i \notin k$. Thus $x^p - a$ is irreducible over k, and b is inseparable over k.

A field with the properties of the lemma is called <u>perfect</u>. A Galois field is perfect. For if a lies in the finite field F_q with $q = p^{p}$ elements, then $a = a^q = \left(a^{p^{v-1}}\right)^p$.

THEOREM 4D. Suppose V is a variety defined over a perfect ground field k. Then V is birationally equivalent to a hypersurface.

<u>Proof</u>. Suppose dim V = d and $\underline{x} = (x_1, \dots, x_n)$ is a generic point of V. Then $n \ge d$. In view of Theorem 4B it will suffice to show that there is a $\underline{y} = (y_1, \dots, y_{d+1})$ with

(4.5)
$$k(\underline{x}) = k(\underline{y}) .$$

We shall show this by induction on n-d. If n-d = 0, set $y_1 = x_1, \dots, y_d = x_d$, $y_{d+1} = 0$. If n-d = 1, set $\underline{y} = \underline{x}$. Suppose now that n-d > 1 and that our claim is true for smaller values of n-d. We may suppose without loss of generality that x_1, \dots, x_{d+1} have transcendence degree d over k. Then (x_1, \dots, x_{d+1}) is the generic point of a hypersurface in Ω^{d+1} . This hypersurface is defined by an equation $f(z_1, \dots, z_{d+1}) = 0$ where $f(Z_1, \dots, Z_{d+1})$ is irreducible over k. Since k is perfect, it is clear that f is not a polynomial in Z_1^p, \dots, Z_{d+1}^p if char k = p > 0. We may then suppose without loss of generality that f is not a polynomial in Z_1, \dots, Z_d , Z_{d+1}^p . Thus f is separable in the variable Z_{d+1} , and x_{d+1} is separable algebraic over $k(x_1, \dots, x_d)$. By the theorem of the primitive element (see Van der Waerden, §43), there is an x' with

$$k(x_1, ..., x_d, x_{d+1}, x_{d+2}) = k(x_1, ..., x_d, x').$$

Thus $\underline{x}' = (x_1, \dots, x_d, x', x_{d+3}, \dots, x_n)$ has $k(\underline{x}') = k(\underline{x})$. By induction hypothesis there is a $\underline{y} \in \Omega^{d+1}$ with $k(\underline{x}') = k(\underline{y})$, hence with (4.5).

5. Linear Disjointness of Fields

LEMMA 5A: Suppose that Ω , K, L, k are fields with $k \subseteq K \subseteq \Omega$, $k \subseteq L \subseteq \Omega$:

The following two properties are equivalent:

- (i) If elements x₁,...,x_m of K are linearly independent
 over k, then they are also linearly independent over L.
- (ii) If elements y_1, \dots, y_n of L are linearly independent over k, then they are also linearly independent over K.

<u>Proof</u>: By symmetry it is sufficient to show that (i) implies (ii). Let y_1, \dots, y_n of L be linearly independent over k. Let x_1, \dots, x_n of K be not all zero. We want to show that

(5.1)
$$x_1y_1 + \cdots + x_ny_n \neq 0$$
.

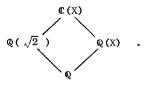
Let d be the maximum number of x_1, \ldots, x_n which are linearly independent over k. Without loss of generality, we may assume that x_1, \ldots, x_d are linearly independent over k. Thus for $d < i \leq n$ we have $x_i = \sum_{j=1}^d c_{ij} x_j$, where $c_{ij} \in k$. We obtain

$$x_1 y_1 + \cdots + x_n y_n = \left(y_1 + \sum_{i=d+1}^n c_{i1} y_i \right) x_1 + \cdots$$
$$+ \left(y_d + \sum_{i=d+1}^n c_{id} y_i \right) x_d .$$

Here $x_1, \dots, x_d \in K$ are linearly independent over k, whence linearly independent over K. Their coefficients are not zero since y_1, \dots, y_n are linearly independent over k. Thus (5.1) follows.

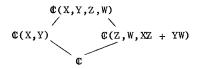
We say that field extensions K , L of k are linearly disjoint over k , if properties (i) and (ii) hold.

Examples: (i) Consider the fields



Here $Q(\sqrt{2})$ and Q(X) are linearly disjoint over Q. For if (a + b $\sqrt{2}$) and c + d $\sqrt{2}$) are linearly independent over Q, then clearly they are linearly independent over Q(X).

(ii) Let X,Y,Z,W be variables, and consider the fields



In this case C(X,Y) and C(Z,W,XZ + YW) are not linearly disjoint over C . For Z,W,XZ + YW are linearly dependent over C(X,Y), but are linearly independent over C. LEMMA 5B: Let us consider fields

where L is the quotient field of a ring R. For linear disjointness it is sufficient to show that if $z_1, \ldots, z_n \in \mathbb{R}$ are linearly independent over k, then they are also linearly independent over K.

<u>Proof</u>: Let $y_1, \ldots, y_n \in L$ be linearly independent over k. We can find a $z \neq 0$, $z \in R$, such that $zy_1, \ldots, zy_n \in R$. Now zy_1, \ldots, zy_n are linearly independent over k, hence also linearly independent over K. Therefore y_1, \ldots, y_n are linearly independent over K.

LEMMA 5C: Suppose we have fields

where K is algebraic over k. Let KL be the set of expressions $x_1 y_1 + \dots + x_n y_n$ with $x_i \in K$, $y_i \in L$ for $1 \le i \le n$, and with n arbitrary.

- (i) The set KL is a field, it contains K and L, and is the smallest such field.
- (ii) Suppose that [K : k] is finite. Then $[KL : L] \leq [K : k]$, with equality precisely if K, L are linearly disjoint over k.

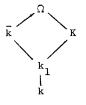
(iii) <u>Now suppose that</u> K, L are linearly disjoint over k. <u>Let</u> α <u>be a k-isomorphism from</u> K <u>to a field</u> H <u>containing</u> k. <u>Let</u> β <u>be a k-isomorphism from</u> L <u>to</u> H. <u>Then</u> $x_1 y_1 + \dots + x_n y_n \rightarrow \alpha(x_1) \beta(y_1) + \dots + \alpha(x_n) \beta(y_n)$ <u>is a well-defined map from</u> KL <u>to</u> H. <u>It is a k-</u> <u>isomorphism into</u> H.

Proof; Exercise.

LEMMA 5D. Suppose we have a diagram of fields and subfields

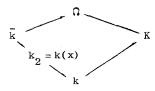
where k is perfect and \bar{k} is the algebraic closure of k. Then K, \bar{k} are linearly disjoint over k if and only if k is algebraically closed in K.

<u>Proof</u>: If k is not algebraically closed in K , then there exists a proper algebraic extension k_1 of k with $k_1 \subseteq K$;



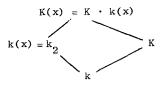
It is now clear that \bar{k} and K cannot be linearly disjoint over k .

Conversely, suppose that k is algebraically closed in K . It suffices to show that k_2 , K are linearly disjoint over k, where k_2 is any finite algebraic extension of k . Since k is perfect, $k_2 = k(x)$, and we have the following diagram of fields:



If f(X) is the defining polynomial of x over k , then it remains irreducible over K, since every proper factor of f(X) has coefficients which are algebraic over k , with some coefficients not in k , and hence not in K .

So for the fields



we have $[K \cdot k(x) : K] = [k(x) : k]$; hence k(x), K are linearly disjoint over k by Lemma 5C.

6. Constant Field Extensions

Consider fields k, K, Ω , such that $k \subseteq K \subseteq \Omega$, and Ω is algebraically closed and has infinite transcendence degree over K. If $\underline{x} \in \Omega^n$, then $\Im_k^{\dagger}(\underline{x})$ is the ideal of all polynomials $f(\underline{x}) \in k[\underline{x}]$ with $f(\underline{x}) = 0$. We have seen in §1 that $\Im_k(\underline{x}) = Q$ is a

Given a subset $M \subseteq \Omega^n$, we write $\Im_k(M)$ or $\Im_k(M)$ for the set of polynomials $f(\underline{x})$ in $k[\underline{x}]$ or $K[\underline{x}]$, respectively, which vanish on M.

prime ideal in $k[\underline{x}]$. Similarly, $\mathfrak{J}_{K}(\underline{x}) = \mathfrak{P}$ is a prime ideal in $K[\underline{x}]$. Let $\mathcal{A}_{K}[\underline{x}]$ be the ideal in $K[\underline{x}]$ generated by \mathcal{A} . The ideal $\mathfrak{A}[\underline{x}]$ consists of all linear combinations $c_{1} f_{1} + \cdots + c_{m} f_{m}$, where $c_{i} \in K$, $f_{i} \in \mathcal{A}$ ($i = 1, \dots, m$). Clearly $\mathfrak{A}_{K}[\underline{x}] \subseteq \mathfrak{P}$. Denote the closure of a point \underline{x} with respect to k, K by $(\underline{x})^{k}$, $(\underline{x})^{K}$, respectively. We have $(\underline{x})^{k} = A(\mathcal{A}) = A(\mathcal{A}K[\underline{x}]) \supseteq A(\mathfrak{R}) = (\underline{x})^{K}$. So

$$(\overline{\underline{x}})^{K} \subseteq (\overline{\underline{x}})^{k}$$
.

Example: Let $k = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$, $\Omega = \mathbb{C}$, and n = 2. Consider the point ($e\sqrt{2}$, e) = \underline{x} . Then $(\overline{\underline{x}})^k$ is the set of zeros of the polynomial $x^2 - 2y^2$. But $(\overline{\underline{x}})^K$ is the set of zeros of $x - \sqrt{2} y$.

<u>THEOREM 6A. Let</u> $k \subseteq K \subseteq \Omega$ be fields, where Ω is algebraically closed and has infinite transcendence degree over K. Let $\underline{x} \in \Omega^n$, $\Im_k(\underline{x}) = \mathcal{A}_k$, $\Im_k(\underline{x}) = \mathfrak{B}$. Consider the following four properties:

- (i) The fields K, $k(\underline{x})$ are linearly disjoint extensions of k,
- (ii) $\Re = \operatorname{cg} K[\underset{=}{X}]$,
- (iii) $(\overline{\underline{x}})^{k} = (\overline{\underline{x}})^{K}$,
- (iv) $\mathfrak{B} = \sqrt{\operatorname{ig} K[\underline{X}]}$.

The properties (i), (ii) are equivalent. Property (ii) implies property (iii), which in turn implies property (iv).

<u>Proof</u>: To show that (i) implies (ii), let $f(\underline{x}) \in \mathbb{N}$. Write $f(\underline{x}) = \sum_{i=1}^{n} a_i f_i(\underline{x})$, where $a_i \in K$, $f_i(\underline{x}) \in k[\underline{x}]$, and a_1, \dots, a_n are linearly independent over k. Now $f(\underline{x}) = 0$, so $\sum_{i=1}^{n} a_i f_i(\underline{x}) = 0$. By the linear disjointness of K and $k(\underline{x})$, the a_i 's are linearly independent over $k(\underline{x})$. It follows that each $f_i(\underline{x}) = 0$, and each $f_i(\underline{x}) \in \mathcal{A}$. Thus $f(\underline{x}) \in \mathcal{A} K[\underline{x}]$.

To show that (ii) implies (i), let $u_1(\underline{x}), \ldots, u_{\ell}(\underline{x})$ be elements of $k[\underline{x}]$, such that $u_1(\underline{x}), \ldots, u_{\ell}(\underline{x})$ are linearly independent over k. By Lemma 5B, it will suffice to show that $u_1(\underline{x}), \ldots, u_{\ell}(\underline{x})$ remain linearly independent over K. Suppose $a_1u_1(\underline{x}) + \cdots + a_{\ell}u_{\ell}(\underline{x}) + \cdots + a_{\ell}u_{\ell}(\underline{x}) = 0$, with $a_i \in K$. Let $f(\underline{x}) = a_1u_1(\underline{x}) + \cdots + a_{\ell}u_{\ell}(\underline{x}) \cdot$ Since $f(\underline{x}) = 0$, the polynomial $f(\underline{x})$ lies in $\Re = \operatorname{gr}[\underline{x}]$. We have a relation

(6.1)
$$a_1 u_1 (\underline{X}) + \dots + a_{\ell} u_{\ell} (\underline{X}) = b_1 f_1 (\underline{X}) + \dots + b_m f_m (\underline{X}) ,$$

where $b_i \in K$, $f_i(\underline{X}) \in \mathcal{G}$ (i = 1,...,m), We may assume that f_1, \ldots, f_m are linearly independent over k. We <u>claim that</u> $u_1(\underline{X}), \ldots, u_k(\underline{X})$, $f_1(\underline{X}), \ldots, f_m(\underline{X})$ are linearly independent over k. Suppose that

(6.2)
$$\sum_{i=1}^{n} c_{i} u_{i} (X) + \sum_{j=1}^{m} d_{j} f_{j} (X) = 0,$$

where c_i , $d_j \in k$. Substituting \underline{x} for \underline{x} , we obtain $\sum_{i=1}^{\ell} c_i u_i(\underline{x}) = 0$. However, the $u_i(\underline{x})$ are linearly independent over k, so that c_1, \dots, c_{ℓ} are all zero. Thus (6.2) reduces to $\sum_{j=1}^{m} d_j f_j(\underline{x}) = 0$. But the $f_j(\underline{x})$ are linearly independent over k, and hence $d_1 = \dots = d_m = 0$. We have established the linear independence of $u_1(\underline{x}), \dots, u_{\ell}(\underline{x}), f_1(\underline{x}), \dots, f_m(\underline{x})$ over k. These ℓ + m polynomials have coefficients in k and are linearly independent over \mathbf{x}^{\dagger} . Hence in (6.1), all the coefficients are zero, and in particular $\mathbf{a}_1 = \dots = \mathbf{a}_k = 0$.

We next want to show that (ii) implies (iii). Let $\underline{y} \in (\overline{\underline{x}})^k$. Then $f(\underline{y}) = 0$ if $f(\underline{x}) \in \mathcal{G}$. Since $\mathfrak{P} = \mathcal{G} k[\underline{x}]$, we have $g(\underline{y}) = 0$ for every $g(\underline{x}) \in \mathfrak{P}$. Thus $\underline{y} \in A(\mathfrak{P}) = (\overline{\underline{x}})^K$. Hence $(\overline{\underline{x}})^k \subseteq (\overline{\underline{x}})^K$, and since the reversed relation is always true, we obtain (iii).

Finally, we are going to show that (iii) implies (iv). Suppose $f(\underline{x}) \in \mathbb{N}$. Then f vanishes on $(\overline{\underline{x}})^{K} = (\overline{\underline{x}})^{K}$, and $f \in \mathfrak{J}_{K}(\underline{x}) = \mathfrak{J}_{K}((\overline{\underline{x}})^{K}) = \mathfrak{J}_{K}(A(\mathfrak{G}K[\underline{x}])) = \sqrt{\mathfrak{G}K[\underline{x}]}$. So $\mathfrak{N} \subseteq \sqrt{\mathfrak{G}K[\underline{x}]}$. Conversely, we have $\mathfrak{G}K[\underline{x}] \subseteq \mathfrak{P}$, whence $\sqrt{\mathfrak{G}K[\underline{x}]} \subseteq \sqrt{\mathfrak{P}} = \mathfrak{P}$.

Example: We give an example where $(\mathbf{x})^{K} = (\mathbf{x})^{k}$, but $\mathfrak{P} \neq \mathcal{Q}K[\mathbf{x}]$. Thus (iii) does not imply (ii). Let \mathbf{k}_{0} be a field of characteristic \mathbf{p} , and let $\mathbf{k} = \mathbf{k}_{0}(\mathbf{z})$, where \mathbf{z} is transcendental over \mathbf{k}_{0} . Put $\mathbf{x} = (\mathbf{t}, \mathbf{t}^{p}/\mathbf{z})$, where \mathbf{t} is transcendental over \mathbf{k} . Then $\mathcal{Q} = \mathfrak{I}_{\mathbf{k}}(\mathbf{x}) = (\mathbf{t}, \mathbf{t}^{p}/\mathbf{z})$, where \mathbf{t} is transcendental over \mathbf{k} . Then $\mathcal{Q} = \mathfrak{I}_{\mathbf{k}}(\mathbf{x}) = (\mathbf{z}\mathbf{x}_{1}^{p} - \mathbf{x}_{2}^{p})$, since $\mathbf{z}\mathbf{x}_{1}^{p} - \mathbf{x}_{2}^{p}$ is an irreducible polynomial over \mathbf{k} . Now take $\mathbf{K} = \mathbf{k}(\mathbf{x}_{1}^{p} - \mathbf{x}_{2}^{p})$. Then $\mathfrak{N} = \mathfrak{I}_{\mathbf{K}}(\mathbf{x}) = (\mathbf{x}_{1} - \mathbf{x}_{2})$, and $\mathfrak{N} \neq \mathbf{Q}$ $\mathbf{K}[\mathbf{x}]$. We have $(\mathbf{x})^{k} = \mathbf{A}((\mathbf{z}\mathbf{x}_{1}^{p} - \mathbf{x}_{2}^{p}))$ and $(\mathbf{x})^{K} = \mathbf{A}((\mathbf{x}\mathbf{x}_{1}^{p} - \mathbf{x}_{2}^{p}))$. We observe that $(\mathbf{x})^{k} = (\mathbf{x})^{K}$, since if $(\mathbf{u}, \mathbf{v}) \in \mathbf{A}(\mathbf{z}\mathbf{x}_{1}^{p} - \mathbf{x}_{2}^{p})$, then $\mathbf{z}\mathbf{u}^{p} - \mathbf{v}^{p} = (\mathbf{x}^{p}/\mathbf{z} \ \mathbf{u} - \mathbf{v})^{p} = 0$, so that $(\mathbf{u}, \mathbf{v}) \in \mathbf{A}(\mathbf{x}_{1}^{p} - \mathbf{x}_{2}^{p})$.

<u>THEOREM 6B.</u> Let k, K, \underline{x} , \mathcal{Y} , \mathcal{B} <u>be as in Theorem 6A.</u> <u>Suppose, moreover, that K is a separable algebraic extension of k.</u> <u>Then</u> $\sqrt{\mathcal{Y} K[\underline{x}]} = \mathcal{Y} K[\underline{x}]$.

Linearly independent vectors in a vector space k^t over k remain linearly independent in the vector space K^t , where K is an overfield of k.

<u>Proof</u>: Let $f \in \sqrt{g} K[\underline{x}]$. There is a field K_0 with $k \subseteq K_0 \subseteq K$ which is finitely generated over k, such that $f \in K_0[\underline{x}]$ and $f \in \sqrt{Ag} K_0[\underline{x}]$. Let $f = \sum_{i=1}^{n} c_i f_i$, where $f_i(\underline{x}) \in k[\underline{x}]$, $c_i \in K_0$, and c_1, \ldots, c_n are linearly independent over k. In fact, by allowing some f_i to be zero, we may suppose that c_1, \ldots, c_n are a basis for K_0 over k, where $n = [K_0 : k]$. There are n distinct kisomorphisms σ of K_0 into Ω ; write c^{σ} for the image of cunder σ . We put

$$f^{\sigma}(\underline{x}) = \sum_{i=1}^{n} c_{i}^{\sigma} f_{i}(\underline{x})$$
.

Here the (n×n)-determinant $|c_i^{\sigma}|$ is not zero, and hence there are d_i^{σ} such that

$$f_{i}(X) = \sum_{\sigma} d_{i}^{(\sigma)\sigma}(X) \qquad (i = 1,...,n).$$

Now for some m, $f^{m} \in \mathcal{G} K_{0}[\stackrel{x}{=}]$, whence $(f^{\sigma})^{m} \in \mathcal{G} K_{0}^{\sigma}[x]$, whence $(f^{\sigma})^{m}(\stackrel{x}{=}) = 0$, and therefore $f^{\sigma}(\stackrel{x}{=}) = 0$ for each σ . Thus each $f_{i}(\stackrel{x}{=}) = 0$, and $f_{i} \in \mathcal{G}$. We have shown that $f \in \mathcal{G} K_{0}[\stackrel{x}{=}] \subseteq \mathcal{G} K[\stackrel{x}{=}]$.

It follows from Theorems 6A, 6B, that the four properties listed in Theorem 6A are equivalent if K is a separable algebraic extension of k. Now if k is perfect, then every algebraic extension K of k is separable. Thus we obtain

 $\underbrace{\text{COROLLARY 6C. If } k \text{ is perfect and if } V \text{ is a variety over } k}_{\text{with generic point } x, \text{ then } V \text{ is an absolute variety if and only}}$

THEOREM 6D. Let k be a perfect ground field.

- (i) If $f(\underline{x}) \in k[\underline{x}]$ is not constant and is absolutely irreducible, then the set of zeros of f is an absolute hypersurface.
- (ii) If S is an absolute hypersurface, then $\mathfrak{F}_k(S) = (f)_k^{\dagger}$, where f is absolutely irreducible and nonconstant.

<u>Proof</u>: (i) This follows directly from Theorem 2C, and the fact that f is absolutely irreducible.

(ii) From Theorem 2C it follows that $\mathfrak{J}_{k}(S) = (f)_{k}$, where f is nonconstant and irreducible over k. Let K be an algebraic extension of k. Then $\mathfrak{J}_{K}(S) = \bigwedge = \mathfrak{V}_{K}[\underline{x}] = (f)_{K}[\underline{x}] = (f)_{K} \cdot \text{Thus}$ the principal ideal generated by f in $K[\underline{x}]$ is a prime ideal, and f is irreducible over K.

<u>REMARKS</u> (1). Let k be perfect and let V be a variety over k . In Theorem 4D we constructed a hypersurface S which was birationally equivalent to V. In fact, the construction was such that $k(\underline{x}) = k(\underline{y})$, where $\underline{x}, \underline{y}$ were certain generic points of V, S, respectively. Now if V is an absolute variety, then k is algebraically

We write (f) resp. (f) for the principal ideal generated by f in $k[\underline{x}]$ and in $K[\underline{x}]$. *)Compare with Theorem 3A of Ch. V. closed in k(x) = k(y), and S is also an absolute variety.

(2) Another approach to Corollary 6C is this: It may be shown directly that if two k-varieties are k-birationally equivalent, and if one is absolute, then so is the other. Thus the proof may be reduced to the case of a hypersurface. But this case is essentially Theorem 3A of Ch. V.

7. Counting Points in Varieties Over Finite Fields

The goal of this section is a proof of

<u>THEOREM 7A.</u> Let V be an absolute variety of dimension d <u>defined over $k = F_q$. Let $N_v = N_v(V)$ be the number of points</u> $\underline{y} = (y_1, \dots, y_n)$ in V with each coordinate in F_{q^v} . Then as $v \to \infty$, (7.1) $N_v = q^{vd} + O(q^{v(d - 1/2)})$.

The proof will depend on a result we derived in Chapter V. Namely, if $f(X_1, \ldots, X_n) \in F_q[X_1, \ldots, X_n]$ is nonconstant and absolutely irreducible and if N is the number of zeros of f in F_a , then

(7.2)
$$|N - q^{n-1}| \le cq^{n-3/2}$$

where c is a constant which depends on n and the total degree of f. For n = 2, this result is Theorem 1A of Chapter III, and for general n it is Theorem 5A of Chapter V. Only the case n = 2 is needed if V is a curve.

LEMMA 7B: Theorem 7A is true for hypersurfaces.

<u>Proof</u>: Let S be an absolute hypersurface of dimension d. By Theorem 6D, S is given by $f(\underline{x}) = 0$, where $f(\underline{X})$ is not constant and is absolutely irreducible. Thus by (7.2),

$$|N - q^{d}| = |N - q^{n-1}| \le cq^{n-(3/2)} = cq^{d-1/2}$$

Now applying this result to $F_{q^{\vee}}$ instead of F_{q} , we see that $|N_{v} - q^{\vee d}| \le cq^{\vee (d - 1/2)}.$

Theorem 7A for the general variety is done by induction on d. If d = 0 and V = (\overline{x}) , then every $z \in F_q(\underline{x})$ is algebraic over F_q , and so satisfies an equation $1 \cdot z - \alpha \cdot 1 = 0$ where $\alpha \in \overline{F}_q$. Thus z, 1 are linearly dependent over \overline{F}_q . Since $F_q(\underline{x})$ and \overline{F}_q are linearly disjoint over F_q , it follows that z, 1 are linearly dependent over F_q . So $z \in F_q$, and $F_q(\underline{x}) = F_q$. Thus \underline{x} has coordinates in F_q , and $V = (\overline{\underline{x}}) = \underline{x}$. It follows that $N_{\mathcal{V}} = 1$ for every \mathcal{V} .

In order to do the induction step from d-1 to d, we shall need

LEMMA 7C. Suppose Theorem 7A is true for absolute varieties of dimension <d. Let W be a variety of dimension <d, not necessarily an absolute variety. Then as $\nu \rightarrow \infty$,

$$N_{v}(W) = O\left(q^{v}(d-1)\right)$$
.

<u>Proof</u>: It is clear that W is still an algebraic set over $K = \overline{F}_q$, but not necessarily a K-variety. So W is a finite union $W = W_1 \cup \ldots \cup W_t$, where the W_i are K-varieties. Each W_i is defined by finitely many equations. The coefficients of all these equations for W_1, \ldots, W_t generate a finite extension $F_{q^{|l|}}$ of F_q . So each W_i is a $F_{q^{|l|}}$ -variety and is as such an absolute variety, and $d_i = \dim W_i \leq d - 1$. Let $N_{\lambda |l|}(W_i)$ be the number of points in W_i with coordinates in $F_{q^{\lambda |l|}}$. By our induction hypothesis, applied to $F_{q^{|l|}}$ instead of F_q , we see that as the integer λ tends to ∞ , we have

$$\begin{split} ^{N}_{\lambda\mu} (W_{i}) &= q^{\lambda\mu} (d_{i}-1) + O\left(q^{\lambda\mu} (d_{i}-3/2)\right) \\ &= O\left(q^{\lambda\mu} (d-1)\right) . \end{split}$$

Thus $N_{\lambda\mu}(W) = O\left(q^{\lambda\mu}(d-1)\right)$ as $\lambda \to \infty$. Given ν , pick an integer λ with $(\lambda -1)\mu < \nu \leq \lambda\mu$. Then as $\nu \to \infty$,

$$\begin{split} N_{\nu}(W) &\leq N_{\lambda\mu}(W) = O\left(q^{\lambda\mu}(d-1)\right) \\ &= O\left(q^{\nu}(d-1) + \mu(d-1)\right) \\ &= O\left(q^{\nu}(d-1)\right) \end{split}$$

The proof of Theorem 7A is now completed as follows. According to Theorem 4D, the variety V is birationally equivalent to a hypersurface S, and this hypersurface is an absolute variety by the remark at the end of §6. By Theorem 4A, there exist proper algebraic subsets $L \subseteq V$, $M \subseteq S$, such that the birational correspondence $\underline{\phi}$ between V and S becomes a 1 - 1 correspondence between points of $V \sim L$ and of $S \sim M$. Now $\underline{\phi}$ as well as its inverse is defined over $k = F_q$, i.e. is defined in terms of rational functions with coefficients in F_q . Thus in this correspondence, points with More generally, points with components in $F_{q^{\cal V}}$ correspond to points with components in $F_{q^{\cal V}}$. Hence

(7.3)
$$|N_{V}(V) - N_{V}(S)| \le N_{V}(L) + N_{V}(M)$$

However, L and M are composed of varieties of dimension $\leq d$. So by Lemma 7C, $N_{\nu}(L) + N_{\nu}(M) = O\left(q^{\nu}(d-1)\right)$. On the other hand, by Lemma 7B, $N_{\nu}(S) = q^{\nu d} + O\left(q^{\nu}(d-1/2)\right)$. These relations in conjunction with (7.3) yield (7.1).

<u>REMARKS</u>. (i) Theorem 7A together with Theorem 2D shows that the number N_{v} of solutions $(x, y_1, \dots, y_t) \in F_{q^v}$ of certain systems of equations

$$y_1^{d_1} = g_1(x)$$
, $y_2^{d_2} = g_2(x, y_1)$,..., $y_t^{d_t} = g_t(x, y_1, ..., y_t)$

satisfies $N_v = q^v + O(q^{v/2})$ as $v \to \infty$. In particular this holds for certain systems of equations

$$y_1^{d_1} = g_1(x), \dots, y_t^{d_t} = g_t(x)$$
.

But a better result for such systems was already derived in Theorem 5A of Chapter II. Under suitable conditions on $g_1(X), \ldots, g_t(X)$ it was shown that $|N_v - q^v| \leq cq^{v/2}$, where c was a constant explicitly determined in terms of t and the degrees of the polynomials g_1, \ldots, g_t .

(ii) More generally, if V is an absolute variety defined over F_q determined by equations $f_1(\underline{x}) = \cdots = f_{\ell}(\underline{x}) = 0$, then our Theorem 7A could be strengthened to

$$|N_{v} - q^{vd}| \leq cq^{v(d - 1/2)}$$

where c is a constant depending only on the number n of variables, on ℓ , and on the total degrees of the polynomials f_1,\ldots,f_t .

(iii) Corollary 2B of Chapter V can be generalized as follows. Suppose V is an absolute variety of dimension d over \mathbf{Q} defined by equations $f_1(\underline{x}) = \cdots = f_{\ell}(\underline{x}) = 0$, where $f_1(\underline{x}), \cdots, f_{\ell}(\underline{x})$ have rational integer coefficients. Let $\overline{f}_1(\underline{x})$ be obtained from $f_1(\underline{x})$ by reduction modulo p and let V_p be the algebraic set defined over

$$\begin{split} \mathbf{F}_{\mathbf{p}} \quad & \text{by } \quad \overline{\mathbf{f}_{1}}(\mathbf{x}) = \dots = \overline{\mathbf{f}}_{\boldsymbol{\ell}}(\mathbf{x}) = 0 \quad & \underline{\text{Then if } \mathbf{p}} > \mathbf{p}_{0} \text{, } \underline{\text{the set } \mathbf{v}_{p}} \quad \underline{\text{is an}} \\ & \underline{\text{absolute variety of dimension}} \quad & \text{d} \quad & \text{Here } \mathbf{p}_{0} \text{ depends only on } \mathbf{n} \text{, } \boldsymbol{\ell} \\ & \text{and the degrees of the polynomials } \mathbf{f}_{1}, \dots, \mathbf{f}_{\boldsymbol{\ell}} \text{. Hence if } \mathbf{p} > \mathbf{p}_{0} \text{,} \\ & \text{then the number N(p) of solutions of the system of congruences} \end{split}$$

$$f_1(x) \equiv \cdots \equiv f_{\ell}(x) \equiv 0 \pmod{p}$$

satisfies $|N(p)-p^d| \leq cp^d - 1/2$.

(iv) The Weil (1949) conjectures (see also Ch. IV, $\S 6$) imply much better estimates than Theorem 7A if V is a "non-singular" variety of dimension d > 1 . These conjectures were recently proved by Deligne

⁺⁾ But see the remark in the Preface.